
Helsinki University of Technology Publications in Engineering Physics. A

Teknillisen korkeakoulun teknillisen fysiikan julkaisuja. A

Espoo 2006 TKK-F-A842

LINSSI

SQL DATABASE FOR GAMMA-RAY SPECTROMETRY

PART II: SCRIPTS AND INTERFACES

Version 1.1

Jarmo Ala-Heikkilä

AB TEKNILLINEN KORKEAKOULU

HELSINKI UNIVERSITY OF TECHNOLOGY

Helsinki University of Technology Publications in Engineering Physics. A

Teknillisen korkeakoulun teknillisen fysiikan julkaisuja. A

Espoo 2006 TKK-F-A842

LINSSI

SQL DATABASE FOR GAMMA-RAY SPECTROMETRY

PART II: SCRIPTS AND INTERFACES

Version 1.1

Jarmo Ala-Heikkilä

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Laboratory of Advanced Energy Systems

Teknillinen korkeakoulu

Teknillisen fysiikan ja matematiikan osasto

Energiateknologiat

Database and Software

2005, 2006

Pertti Aarnio1, Jarmo Ala-Heikkilä1, Arto Isolankila2, Antero Kuusi2, Mikael

Moring2, Mika Nikkinen2, Tommi Salonen2, Teemu Siiskonen2, Harri Toivonen2,

Kurt Ungar3, Weihua Zhang3

1Helsinki University of Technology, Radiation Physics Group
2Finnish Radiation and Nuclear Safety Authority
3Health Canada, Radiation Protection Bureau

Manual

2005, 2006, 2007

Jarmo Ala-Heikkilä

Distribution:

Helsinki University of Technology

Laboratory of Advanced Energy Systems

P.O. Box 4100

FI-02015 TKK

ISBN 951-22-8185-6

ISSN 1456-3320

For the latest version of this manual see:

http://linssi.hut.fi/radphys/linssi

http://linssi.hut.fi/radphys/linssi

Information in this document is subject to change without notice and does not
represent any commitment on the part of the authors. The software described
in this document is furnished under a license agreement. The user may not
copy the software on magnetic or optical tape, disk or any other medium, for
any other purpose than the license holder’s personal use.

Copyright

This database and accompanying software and written materials are products
of copyright c© owners and thereby protected by international copyright laws
and treaties. You must keep the software package in strict confidence and
treat it like any other copyrighted material. You may not copy the software or
the written materials accompanying the software package except as explicitly
allowed by the license. The use of the software package must be in strict
adherence with the license.

License

License conditions are defined in a separate document that must be consulted.

Disclaimer of Responsibility for the Software

The program is provided “as is”without warranty of any kind, either expressed
or implied, including but not limited to the implied warranties of merchantabil-
ity and fitness for a particular purpose. The authors do not warrant that the
functions contained in the software will meet any requirements or that the
operation of the software will be uninterrupted or error free.
In no event will the authors be liable for any damages, including any lost
profits, lost savings, or other incidental or consequential damages arising out
of the use or inability to use the program, even if authors’ representative has
been advised of the possibility of such damages, or for any claim by any other
party.
MySQL is a trademark of MySQL AB. Shaman is a trademark of Baryon Oy.
Sampo, MicroSampo and Sampo 90 are trademarks of Logion Oy. Other
trademarks are the property of their respective owners.

i

Any data may be defined in one place only.

If data are defined in more places, they will diverge (it will not stay the same,
if it ever was). If data are changed while not in one place only, you never
know whether you changed every instance. However, you need a method
(document control) that assures that all places where the changed data is
referenced from are informed of any change. Relational databases use this
principle. The same applies to software: every function should be defined
only once (it would have made the millennium problem a piece of cake!).

Niels R. Malotaux

ii

Contents

1 Introduction 1

2 Linssi Interface, Configuration and Documentation 2

2.1 Basic Linssi Interface: LinssiWorld . 2

2.2 Basic Linssi Configuration . 4

2.3 Documentation of Linssi Scripts . 6

3 Database Management Scripts 8

3.1 preparedb . 8

3.2 maketables . 9

3.3 desctables . 10

3.4 checkdb . 10

3.5 fixdb . 14

4 Entry Point Zero 18

4.1 stufftodb . 18

4.2 showStations.php . 19

4.3 showWeather.php . 20

4.4 deleteStation . 20

4.5 showCoordinates . 20

4.6 deleteTempCoordinates . 20

4.7 deleteCoordinates . 21

4.8 deleteWeather . 21

5 Entry Point One 22

5.1 recordSample.php, selectSampler.php, startSampler.php, etc. 22

5.2 showAirFilterSamples . 22

5.3 updateAirFilterSamples . 22

6 Entry Point Two 23

6.1 sampletodb . 23

6.2 meastodb . 25

6.3 showSamples.php . 27

6.4 sampleReport.php . 27

6.5 deleteSample . 28

6.6 deleteMeas . 29

iii

7 Calibration Management 30

7.1 calibrations.php . 30

7.2 addCalibration.php . 30

7.3 deleteCalibration . 31

8 Entry Point Three 32

8.1 analysistodb . 32

8.2 deleteAnalysis . 34

8.3 analysisReport.php . 34

8.4 dbtophd . 35

9 Reporting and Displaying Scripts 37

9.1 showSpectrum.php . 37

9.2 zoomSpectrum.php . 37

9.3 editAnalysis.php . 38

10 Linssi Script Reference List 39

10.1 Configuration Scripts and Libraries . 39

10.2 Database Creation Scripts . 41

10.3 Basic Housekeeping Scripts . 41

10.4 Basic Database Input Scripts . 42

10.5 Data Extraction Scripts . 43

10.6 Scripts for Handling Calibrations . 44

10.7 Scripts for Interactive Data Browsing and Analysis 45

10.8 Report Generating Scripts . 47

10.9 CTBT Laboratory Scripts . 48

11 Interface between Linssi and Analysis Software 51

11.1 Linssi with UniSampo–Shaman . 51

11.1.1 Database Insertion in the Pipeline Mode 53

11.1.2 Database Insertion in the Batch Mode 53

11.1.3 Database Insertion in the Interactive Mode 53

11.2 Generation of Database Keys and Identifiers 54

11.2.1 Technical Implementation . 57

11.3 Tables Updated by UniSampo and Shaman 58

12 Adopted Syntax for Unique Keys 59

12.1 idSample . 60

12.2 sampleId . 60

12.3 phdSampleName . 60

12.4 extSampleName . 61

12.5 idMeas . 61

12.6 measId . 61

12.7 phdMeasName . 62

12.8 extMeasName . 62

13 PHD-File Format Extension 63

13.1 Example of an Extended PHD-File . 64

iv

14 AKu File Format for Database Import 66

14.1 Example Report in AKu Format . 67

15 Administrative Issues 73

Bibliography 74

A Installation Instructions for Linssi 76

A.1 Database . 76
A.2 Installation of the Linssi PHP Scripts . 78

A.2.1 Database Access Credentials . 78
A.2.2 Installing JpGraph . 79
A.2.3 Getting Analysis Reports in PDF Format 79
A.2.4 Getting Sample Reports in XLS Format 79
A.2.5 HTTP Authentication . 80

A.3 Installation of the CTBT Laboratory Scripts 80
A.3.1 Basic Installation and Configuration 80
A.3.2 Storing Mails to the Database . 80
A.3.3 Automated Mail Processing . 81

v

vi

Chapter 1

Introduction

This document is targeted to people who know what the SQL database for gamma-ray
spectrometry called Linssi is. Linssi is documented in a comprehensive manual [1]. Please
read at least the chapter “Introduction” of the database manual carefully before proceeding
with this document, as well as its appendix on naming conventions.

The purpose of this manual is to document the scripts available in the Linssi package and
how Linssi can be interfaced with software packages for gamma-ray spectrometry. The
scripts are self-documenting: they are requested to start with a comment block that explains
their purpose, syntax, history and relevant information about their action. These comments
have been utilized in generating this manual, with the aim to present a general view of the
complete package.

All Linssi scripts in the package are not necessarily documented here, because new scripts
may be added to the distribution more frequently than this document is updated. An up-
to-date list of the scripts will be maintained on the Linssi home page
http://linssi.hut.fi/radphys/linssi/.

The UniSampo–Shaman (USS) analysis package is documented in comprehensive manu-
als [2, 3]. It has been interfaced with Linssi, UniSampo since the first database version
and Shaman since Linssi v.0.9 in July 2003. As a consequence, functionality of the analysis
result tables of Linssi has been tested most thoroughly.

Nevertheless, it should be stressed that the development goal of Linssi has been to be as
generic as possible so that it can be connected with gamma-ray spectrum analysis software
packages other than UniSampo and Shaman. As an illustration, the spectrum analysis
tool Aatami developed by the Evaluation Section of the CTBTO was interfaced with Linssi

in December 2004. The occurrences of UniSampo and Shaman in this document shall
mainly be understood as examples. Additionally, this document is meant to serve as a
documentation of the functional UniSampo-Shaman-Linssi-system at STUK.

We have chosen MySQL as the database engine. However, a Linssi database can be im-
plemented with any SQL engine (PostgreSQL, Oracle, etc.) and its documentation is in-
dependent of the choice. The same is true for the adopted interface between Linssi and
any analysis software package. On the other hand, the database scripts written in SQL and
Perl may be engine-dependent, so their applicability is to be evaluated with other database
engines but MySQL. However, we do not expect any major difficulties in porting the scripts
to other engines.

1

http://linssi.hut.fi/radphys/linssi/

Chapter 2

Linssi Interface, Configuration and

Documentation

This chapter presents basic information of Linssi user interface, configuration principles and
script documentation instructions. These are the basics that help the reader to understand
the following chapters.

2.1 Basic Linssi Interface: LinssiWorld

Experienced users may use Linssi through SQL-queries on the MySQL command prompt or
through scripts written in Perl and SQL. For an ordinary user, the main Linssi interface is a
Linssi home page known as LinssiWorld in a WWW browser, by default the one shown in
Fig. 2.1. The exact contents of the home page may vary from one organization to another,
but the distributed version has the following functionality in this interface:

• Queries for sample, measurement and analysis data.

• Display of analysis data in different formats of text reports.

• Display of analysis data in graphical format with zooming capability.

• Display of measurement systems: stations, detectors, setups.

• State-of-health and Quality Control displays.

• Display of calibration data in text and graph, with an update option.

A LinssiWorld installation is available in the WWW at http://linssi.hut.fi/linssi.html.
This demonstration installation has all features of the distributed script package, but it lacks
all update features, for obvious reasons.

The wide variety of Linssi scripts available in the distribution, illustrated by the demon-
stration version, are presented in detail in the following chapters of this document. The
presentation is organized according to the timeline of their usage, denoted as entry points
0 . . . 3 in accordance with Linssi manual Part I [1].

Another perspective on the basic Linssi scripts is presented in Ch. 10. Its purpose is to work
as a reference when one is looking for a Linssi script for a specific purpose.

2

http://linssi.hut.fi/linssi.html

Figure 2.1: The distributed version of LinssiWorld.

3

The distribution package of Linssi scripts includes two alternative LinssiWorld pages: a
standard one and one for a CTBT laboratory. The files connected with them are listed here.

linssi.html

Purpose: An example of a LinssiWorld web page, calls linssi 11.html

Package: Linssi core

Created: 6.2.2006

linssi 11.html

Purpose: An example of a LinssiWorld web page

Package: Linssi core

Created: 23.2.2006

linssi.css

Purpose: Style sheet for LinssiWorld

Package: Linssi core

Created: 30.1.2006

ctbtLab.html

Purpose: An example of a LinssiWorld web page for a CTBT laboratory

Package: Linssi CTBT scripts

Created: 8.6.2006

ctbtLabSamples.css

Purpose: Style sheet for LinssiWorld of a CTBT laboratory

Package: Linssi CTBT scripts

Created: 8.6.2006

2.2 Basic Linssi Configuration

For using Linssi, configuration on two levels is needed: on the administrator level and on the
user level. The basic configuration files are linssiConfig.php and .linssirc, respectively.
The former is utilized in WWW-based usage of Linssi i.e., with PHP-scripts, and the latter
in all other Linssi usage but PHP-scripts.

Step-by-step installation and configuration instructions for the Linssi administrator are pre-
sented in App. A. The basic configuration like creating the database and its users is done
on the command prompt or using the scripts of Ch. 3.

4

linssiConfig.php

The configuration file linssiConfig.php shall be scrutinized before the WWW interface
LinssiWorld can be utilized. This PHP configuration file contains various settings needed
in the PHP scripts like:

• paths to external libraries,

• basic database settings,

• option settings,

• directory settings.

The linssiConfig.php file in the distribution contains the default settings, but they must
naturally be adjusted if a non-default installation is made. The distributed linssiCon-

fig.php is extensively commented, making it self-documented.

.linssirc

The configuration file for a Linssi user is .linssirc and the Linssi script distribution includes
a template file for it, named linssirc-template. This template file must be checked by the
administrator and modified to reflect the Linssi environment in use. The updated template
file is then copied to the Unix home directory of each user allowed to use Linssi.

If there are several databases available, a separate file shall be made for each of them, named
as .linssirc* where * can be any string allowed by the operating system. A symbolic link
named .linssirc may be made to the default one.

The administrator shall define the user-specific usage permissions in the updated .linssirc

file. For example, if there are users only allowed to read a database, their .linssirc should
not contain a [write]-section with write username and password.

The structure of .linssirc is such that various options are defined and organized in sep-
arate sections. The file is always started with a default section that contains the following
obligatory options (see for additional explanations in the comments of linssirc-template):

• databaseVersion:
version of Linssi database schema

• databaseScriptDir:
directory where Linssi Perl scripts reside

• databaseName:
full name of the database as given to Perl scripts (may include host and port)

• databasePlain:
plain name of the database without host or port

• databaseHost:
name of the database server (def. localhost)

• databasePort:
server port number for MySQL connections (def. 3306)

5

• odbc:
selection of ODBC drivers (0 or 1) [5]

Then come the optional sections, most often [read] and [write]. As shown, section names
are in brackets and they contain a list of section-specific options. In the named sections, the
following options are to be specified:

• username:
MySQL username for read or write access

• password:
password corresponding to the MySQL username for read or write access

The options and sections defined in the linssirc-template file are reserved words. It is
allowed to add own sections and options to .linssirc and they can be reserved globally by an
announcement to Linssi Administrative Body. All programs and scripts reading .linssirc

shall ignore the options they do not recognize.

There are two Perl function packages in the Linssi script distribution for interpreting the
.linssirc files, named linssiConfig.pm and linssiGetoptStd.pm. They are used by
current Perl scripts and also recommended for any new scripts.

2.3 Documentation of Linssi Scripts

The script descriptions in Ch. 3–10 of this document have been made semi-automatically
by the collectInfo script included in the Linssi package. This is possible when the script
authors have obeyed a commenting practice developed at STUK/ASL. In this practice, all
scripts are started with a documentation block behind double comment signs (e.g., ## in
Perl scripts), utilizing fixed XML-type tags for different features of the scripts. This practice
is recommended to all Linssi script authors and it is in fact enforced on any new scripts to
be added to the official distribution.

The following documentation items are defined as compulsory for each script by the Linssi

Administrative Body (LAB):

1. Name of the script followed by space-hyphen-space and the purpose of the script in
max. 80 characters. This line must be before all tagged information in the documen-
tation block.

2. Author(s) of the script within tags <author>...</author>.

3. Original creation date of the script within tags <created>...</created>.

4. Package that the script belongs to within tags <package>...</package>. Current
package alternatives are “Linssi core” and “Linssi CTBT scripts”.

5. Version number of the script within tags <version>...</version>. The current prac-
tice is to use three numbers for scripts: the first two are the Linssi database schema
version and the third one the actual version number of the script. Example: 1.1.13
means the 13th released version of a script for Linssi v.1.1. The actual version

number of the script shall be upgraded when any modifications are made

in the script and released.

6

When appropriate, the following additional tags can be used:

– <bugs>...</bugs>:
known bugs or deficiencies

– <configuration>...</configuration>:
configuration files and their contents used

– <description>...</description> (alias <module>...</module>):
detailed documentation of the script functionality

– <functionList>...</functionList> (alias <subroutine>...</subroutine>):
list of functions or subroutines included in the file

– <modules>...</modules> (alias <uses>...</uses>):
list of external modules used by the script

– <options>...</options>:
documentation of the options supported by the script

– <parameters>...</parameters> (alias <param>...</param>):
documentation of parameters needed by the script

– <readsTables>...</readsTables>:
list of Linssi tables read by the script

– <requires>...</requires>:
external modules required by the script

– <return>...</return>:
return value of the script

– <synopsis>...</synopsis>:
synopsis of the script

– <syntax>...</syntax>:
script/module call syntax

– <updated>...</updated>:
date of an update; may also include a description of the update and the author

– <writesTables>...</writesTables>:
list of Linssi tables written by the script

Anything in the documentation block between lines like “------” is output to this document
verbatim. An example is seen in the Description of script stufftodb on p. 18 (11 lines
starting from #table_name).

The current Linssi scripts can be used as a model for documentation.

7

Chapter 3

Database Management Scripts

The most basic database scripts are the management scripts to create the database, to list
its table contents, and to check its integrity. These scripts are presented in this chapter and
their usage is illustrated in App. A.

Some scripts refer to ODBC that is clarified in Ref. [5].

3.1 preparedb

Purpose: Create database and user accounts

Version: 1.1.1

Author: Andreas Pelikan

Package: Linssi core

Created: 18.11.2005

Updated: 5.7.2006 JAH : Documentation

Description: This script creates a database instance and user accounts with standard priv-
ileges for a Linssi MySQL database, i.e. it prepares the database. The Linssi

database tables have to be created separately with a subsequent call to maketa-
bles. If the database instance already exists, only the user accounts are cre-
ated/updated.
The script connects to the database with the database account information in
the [create] section of the configuration, which may be overwritten by options.
Database creator needs CREATE and GRANT OPTION privileges!

Syntax: preparedb [-d database_name] [-u username] [-p password] [-r readuser]

[-R readpwd] [-w writeuser] [-w writepwd] [-C configFile]

Options: -C name of configuration file. If not specified, ~/.linssirc is used.

For options that read their default from the config file, these are

indicated by (section.key)

-d name of database instance to generate (dbname)

-u db creator user name (create.username)

-p db creator password (create.password)

-r read-account user name (read.username)

-R read-account password (read.password)

8

-w write-account user name (write.username)

-W write-account password (write.password)

3.2 maketables

Purpose: Creates tables in Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 15.7.2003

Updated: 30.11.2004
Documentation updated.
9.12.2004
Table specification changed to v.1.1. (b.4.7)
21.12.2004
Some bugfixes
19.10.2005
version 1.1.1: ODBC support added. New version numbering. Uses
linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password (of course you shouldn’t
do this with your write user, but if you want to leave gaping security holes
why should we stop you).
24.5.2006
CTBT specific tables modified -tos
5.7.2006 JAH : Documentation

Description: This script automatically creates tables for Linssi database. The table specifi-
cations are according to the database definition 1.1.
The script uses database name, username and password given as arguments. If
database name, username, password and/or odbc-paramter are not given, the
values in configuration file will be used (username and password are those of
write-user). Note that you need to have the linssiConfig.pm file either in one of
the perl library directories or in the the same directory as this script or add ’use
lib ”linssiConfigPath”’ at the beginning of file. If the name of configuration file
is not given, the default file ($ENV{HOME}/.linssirc) is used.
If a table with the same name already exists in database the script continues
with next table. The script does NOT check if the existing table contains the
same fields that the script is trying to create.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: maketables [-d database_name] [-u username] [-p password] [-g configFile]

[- c] [-odbc|-noodbc]

Options: -c Generate CTBT tables in addition to default tables.

-g configFile Use configFile as configuration file. If database name,

9

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

Modules: linssiConfig.pm v.1.1.1 or newer

3.3 desctables

Purpose: Shows descriptions of all tables in a Linssi database

Version: 1.1.6

Author: Jarmo Ala-Heikkila

Package: Linssi core

Created: 11.2.2004

Updated: 13.2.2004
22.3.2004
27.1.2006
8.6.2006
5.7.2006

Description: This script shows descriptions of all tables in a Linssi database. It is invoked
from Unix command line using the given syntax. The MySQL username (def.
webbi) shall be one for reading without a password. The obsolete configuration
file ˜/.my.cnf shall not exist.

Syntax: desctables [-d database] [-u username]

3.4 checkdb

Purpose: Checks Linssi database for errors and inconsistencies in data

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 4.6.2004

Updated: 8.6.2005
Updated for current database specification.
15.6.2005

10

Modified the system for checking links to analyses table. Functionality
is unchanged but the script should run much faster if there are a lot
of analyses in the system.
17.6.2005
Added -t -option.
11.7.2005
Few minor bugs fixed and error messages clarified.
10.10.2005
Version 1.1.1: Uses linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password (of course you shouldn’t
do this with your write user, but if you want to leave gaping security holes
why should we stop you). Added -l -option. Added –noodbc -option.
9.11.2005
Version 1.1.1a: Fixed a bug in removal of data from lineAssociations.
5.7.2006 JAH : Documentation

Description: This script checks Linssi database for errors and inconsistencies. The table
specifications are according to the database definition 1.1.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc-parameter are not given the val-
ues in the configuration file are used instead (username and password are those
of write- user). See below for more details. Note that you need to have the
linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If - g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.
Script can be run either in normal interactive mode, in batch mode (-b option)
or in list mode (-l option). List mode does not make any changes to database, it
only lists found errors. In interactive mode the user is prompted for confirmation
before doing any changes to database other than removing data failing critical
checks. If you want only to reset the invalid links to NULL or automatically add
dummy entries instead of removing those links run fixdb afterwards. In batch
mode only changes done to database are those that don’t need user confirma-
tion. In all other cases the script only prints out a warning. Thus batch mode
corresponds to interactive mode but answering ”no” to all questions.
The script does following checks (! = check for critical reference, data failing this
check will be removed without prompting user for confirmation, * = Warning
only, no modification even in interactive mode). When checking foreign keys
in non-critical references a NULL value in foreign key is considered to be in-
tentionally left blank and is not reported as an error. In critical references a
NULL foreign key is considered an error and entry is removed. To fix errors
in warning-only checks see fixdb. NOTE: With a lot of content in database
the running time of this script may be tens of minutes. Whole database will
be locked during that time. It is recommended to ensure that no time-critical
database access will be attempted in the near future before running this script.
-For every wheathers.stationId foreign key there is corresponding stations.stationId
primary key.
*For every samplers.stationName foreign key there is corresponding stations.stationId
primary key.

11

-For every mobileCoordinates.stationId foreign key there is corresponding sta-
tions.stationId primary key.
-For every mobileCoordinates.idSample foreign key there is corresponding sam-
ples.idSample primary key.
-For every mobileCoordinates.idMeas foreign key there is corresponding mea-
surements.idMeas primary key.
-For every airFilterSOH.samplerId foreign key there is corresponding samplers.samplerId
primary key.
!For every airFilterSOH.idSample foreign key there is corresponding sample-
Data.idSample primary key.
!For every airFilterSamples.idSample foreign key there is corresponding sam-
ples.idSample primary key.
*For every airFilterSamples.samplerId foreign key there is corresponding sam-
plers.samplerId primary key.
*For every airFilterSamples.stationId foreign key there is corresponding sta-
tion.stationId primary key.
-For every calibrationSamples.idSample foreign key there is corresponding sam-
ples.idSample primary key.
!For every calibrationNuclides.idSample foreign key there is corresponding sam-
ples.idSample primary key.
*For every calibrationNuclides.idCalibrationLibrary foreign key there is corre-
sponding calibrationLibraries.idCalibrationLibrary primary key.
!For every sampleSplitsCombines.parentIdSample foreign key there is correspond-
ing samples.idSample primary key.
!For every sampleSplitsCombines.daughterIdSample foreign key there is corre-
sponding samples.idSample primary key.
*For every sources.idSample foreign key there is corresponding samples.idSample
primary key.
-For every measurementSetups.detectorId foreign key there is corresponding de-
tectors.detectorId primary key.
-For every measurementSetups.sourceId foreign key there is corresponding sources.sourceId
primary key.
-For every measurementSetups.idCal foreign key there is corresponding calibra-
tions.idCal primary key.
-For every measurementSetups.blankIdAnalysis foreign key there is correspond-
ing analyses.idAnalysis primary key.
-For every measurementSetups.backgroundIdAnalysis foreign key there is corre-
sponding analyses.idAnalysis primary key.
!For every measurements.idSample foreign key there is corresponding samples.idSample
primary key.
-For every measurements.measSetupId foreign key there is corresponding mea-
surementSetups.measSetupId primary key.
-For every measurements.blankIdMeas foreign key there is corresponding mea-
surements.idMeas primary key.
-For every measurements.backgroundIdMeas foreign key there is corresponding
measurements.idMeas primary key.
-For every calibrations.idInputCal foreign key there is corresponding calibra-
tions.idCal primary key.
-For every calibrations.measSetupId foreign key there is corresponding measure-

12

mentSetups.measSetupId.idMeas primary key.
!For every calPoints.idCal, calPoints.calTypeId foreign key pait there is corre-
sponding alPoints.idCal, calPoints.calTypeId primary key pair.
-For every calPoints.idAnalysis foreign key there is corresponding analyses.idAnalysis
primary key.
!For every calPreferences.idAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
!For every calPreferences.idCal foreign key there is corresponding calibrations.idCal
primary key.
!For every analyses.idMeas foreign key there is corresponding measurements.idMeas
primary key.
!Analyses.idSample is same as measurements.idSample for the measurement used
in this analysis.
-For every analyses.blankIdAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
-For every analyses.backgroundIdAnalysis foreign key there is corresponding
analysesData.idAnalysis primary key.
-For every analyses.inputIdAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
!For every peaks.idAnalysis foreign key there is corresponding analysiss.idAnalysis
primary key.
!Peaks.idSample and peaks.idMeas is same as analyses.idSample and analy-
ses.idMeas for the analysis used in this analysis.
!For every lineAssociations.idAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
!LineAssociations.idSample and peakData.idMeas is same as analyses.idSample
and analyses.idMeas for the analysis used in this analysis.
!For every activities.idAnalysis foreign key there is corresponding analyses.idAnalysis
primary key.
!activities.idSample and activities.idMeas is same as analyses.idSample and anal-
yses.idMeas for the analysis used in this analysis.
!For every activityLimits.idAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
!activityLimits.idSample and acitivityLimits.idMeas is same as analyses.idSample
and analyses.idMeas for the analysis used in this analysis.
!For every nuclideRatios.idAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
!nuclideRatios.idSample and nuclideRatios.idMeas is same as analyses.idSample
and analyses.idMeas for the analysis used in this analysis.
!For every finalResults.idAnalysis foreign key there is corresponding analysis-
Data.idAnalysis primary key.
!finalResults.idSample and finalResults.idMeas is same as analyses.idSample and
analyses.idMeas for the analysis used in this analysis.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: checkdb [-b|-l] [-t] [-d databaseName/DSN] [-u username] [-p password]

[-g configFile] [-odbc|-noodbc]

Options: -g configFile Use configFile as configuration file. If database name,

13

username, password and/or odbc-option are not given, the values

read from configFile will be used instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

-d databaseName Name of the database that contains the wanted information.

If not given the name in the configuration file is used.

-u username Username to be used. User need to have select rights to

the database. If not given the name in the configuration

file is used.

-p password Password for the user. If not given the one in the

configuration file is used.

-b Use batch mode instead of interactive mode.

-l Use list mode

-t Print starting and ending times.

Reads tables: weathers, stations, samplers, mobileCoordinates, samples, measurements, air-
FilterSOH, airFilterSamples, calibrationSamples, calibrationNuclides, calibra-
tionLibraries, sampleSplitsCombines, sources, measurementSetups. detectors.
calibrations, analyses, calPoints, calPreferences, peaks, lineAssociations, activi-
ties, activityLimits, nuclideRatios, finalResults

Writes tables: weathers, stations, samplers, mobileCoordinates, samples, measurements, air-
FilterSOH, airFilterSamples, calibrationSamples, calibrationNuclides, calibra-
tionLibraries, sampleSplitsCombines, sources, measurementSetups. detectors.
calibrations, analyses, calPoints, calPreferences, peaks, lineAssociations, activi-
ties, activityLimits, nuclideRatios, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

3.5 fixdb

Purpose: Fixes errors and inconsistencies in Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

14

Created: 9.10.2005

Updated: 5.7.2006 JAH : Documentation

Description: This script fixes those errors and inconsistencies in Linssi database that checkdb
does not.
The database name, username and password can be given as arguments for the
script. If you wish to use no password give an empty string as password (-p ’’)
If username, database name, password or odbc-parameter are not given the val-
ues in the configuration file are used instead (username and password are those
of write-user). See below for more details. Note that you need to have the
linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.
Script can be run either in normal interactive mode or in batch mode (-b op-
tion). In interactive mode user is prompted for confirmation before doing any
changes to database. Possible actions are usually resetting the invalid links to
NULL or automatically adding dummy entries. In batch mode ”add dummy”
action is selected where applicable, otherwise ”null” action is used.
The script does following checks. NOTE: With a lot of content in database
the running time of script may be tens of minutes. The whole database will
be locked during that time. It is recommended to ensure that no time-critical
database access will be attemped in the near future before running this script.
-For every wheathers.stationId foreign key there is corresponding stations.stationId
primary key.
-For every mobileCoordinates.stationId foreign key there is corresponding sta-
tions.stationId primary key.
-For every mobileCoordinates.idSample foreign key there is corresponding sam-
ples.idSample primary key.
-For every mobileCoordinates.idMeas foreign key there is corresponding mea-
surements.idMeas primary key.
-For every airFilterSOH.samplerId foreign key there is corresponding samplers.samplerId
primary key.
-For every airFilterSamples.samplerId foreign key there is corresponding sam-
plers.samplerId primary key.
-For every airFilterSamples.stationId foreign key there is corresponding sta-
tion.stationId primary key.
-For every calibrationSamples.idSample foreign key there is corresponding sam-
ples.idSample primary key.
-For every calibrationNuclides.idCalibrationLibrary foreign key there is corre-
sponding calibrationLibraries.idCalibrationLibrary primary key.
-For every sources.idSample foreign key there is corresponding samples.idSample
primary key.
-For every measurementSetups.detectorId foreign key there is corresponding de-
tectors.detectorId primary key.
-For every measurementSetups.sourceId foreign key there is corresponding sources.sourceId
primary key.
-For every measurementSetups.idCal foreign key there is corresponding calibra-
tions.idCal primary key.
-For every measurementSetups.blankIdAnalysis foreign key there is correspond-

15

ing analyses.idAnalysis primary key.
-For every measurementSetups.backgroundIdAnalysis foreign key there is corre-
sponding analyses.idAnalysis primary key.
-For every measurements.measSetupId foreign key there is corresponding mea-
surementSetups.measSetupId primary key.
-For every measurements.blankIdMeas foreign key there is corresponding mea-
surements.idMeas primary key.
-For every measurements.backgroundIdMeas foreign key there is corresponding
measurements.idMeas primary key.
-For every calibrations.idInputCal foreign key there is corresponding calibra-
tions.idCal primary key.
-For every calibrations.measSetupId foreign key there is corresponding measure-
mentSetups.measSetupId.idMeas primary key.
-For every calPoints.idAnalysis foreign key there is corresponding analyses.idAnalysis
primary key.
-For every analyses.blankIdAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.
-For every analyses.backgroundIdAnalysis foreign key there is corresponding
analysesData.idAnalysis primary key.
-For every analyses.inputIdAnalysis foreign key there is corresponding analy-
ses.idAnalysis primary key.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: fixdb [-b] [-d databaseName/DSN] [-u username] [-p password]

[-g configFile] [-odbc|-noodbc]

Options: -g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

inter MySQL drivers are used.

-d databaseName Name of the database that contains the wanted information.

If not given the ’write’ username in the configuration file is used.

-u username Username to be used. User need to have select rights to

the database. If not given the ’write’ uesrname in the

configuration file.

-p password Password for the user. If not given the one in user’s

.linssirc will be used.

16

-b Uses batch mode instead of interactive mode.

Reads tables: weathers, stations, samplers, mobileCoordinates, samples, measurements, air-
FilterSOH, airFilterSamples, calibrationSamples, calibrationNuclides, calibra-
tionLibraries, sampleSplitsCombines, sources, measurementSetups. detectors.
calibrations, analyses, calPoints, calPreferences, peaks, lineAssociations, activi-
ties, activityLimits, nuclideRatios, finalResults

Writes tables: weathers, stations, samplers, mobileCoordinates, samples, measurements, air-
FilterSOH, airFilterSamples, calibrationSamples, calibrationNuclides, calibra-
tionLibraries, sampleSplitsCombines, sources, measurementSetups. detectors.
calibrations, analyses, calPoints, calPreferences, peaks, lineAssociations, activi-
ties, activityLimits, nuclideRatios, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

17

Chapter 4

Entry Point Zero

In Linssi manual Part I [1] entry point 0 is defined as denoting the station group of database
tables, i.e., tables stations, weathers, and mobileCoordinates. These tables can be
updated with the scripts of this chapter and this can be done relatively independent from
the other table groups.

Some of these scripts refer to AKu input file format that is documented in Ch. 14. Some
scripts refer to ODBC that is clarified in Ref. [5].

4.1 stufftodb

Purpose: Script for reading miscellaneous data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 30.11.2005

Updated: 5.7.2006 JAH : Documentation

Description: Script for importing miscellaneous table data into Linssi database. This script
reads those tables that other input scripts don’t into database. Data is read
from stdin unless -f -option is used. The AKu input format (see Linssi manual
Part II) is the same as type 1 format of analysistodb:
#table_name

firstValue

secondValue

<blobName>

BLOB

BLOB

</blobName>

thirdValue

#another_table_name

...

Empty line alone (except inside a blob) is assumed to end the current table. All
tables can exist more than once in the input report, each instance of same table
is treated as a separate entry into database. None of the tables are mandatory.
Lines containing only ”&”are treated as NULL value when entering it into table.

18

The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc-parameter are not given the val-
ues in the configuration file are used instead (username and password are those
of write-user). See below for more details. Note that you need to have the
linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.
Following tables are currently supported by stufftodb: stations, weathers, sam-
plers, calibrationLibraries, detectors, shields, attenuators, measurementSetups
(for ”standard” setups that are not related to one specific sample).

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: stufftodb [-f reportfile] [-d database_name/DSN] [-u username]

[-p password] [-g configFile] [-o] [-odbc|-noodbc]

Options:

-f Data is read from a given file. If this option is not given, the

report is read from stdin.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

inter MySQL drivers are used.

-o If some of tables contain data with the same primary key, data

of those reacords already in database is overwritten. If this

option is not specified, all records with duplicate primary

keys are skipped

Writes tables: stations, weathers, samplers, calibrationLibraries, detectors, shields, attenu-
ators, measurementSetups

Modules: linssiConfig.pm v.1.1.1 or newer

4.2 showStations.php

Purpose: Shows the stations from the database

Version: 1.1.1

19

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

Updated: 5.7.2006 JAH : Documentation

Description: Shows the stations from the database.

Reads tables: stations

Modules: linssiConfig.php, htmlTags.php, linssiPHPLib.php

4.3 showWeather.php

Purpose: Shows selected weather data from selected weather stations

Version: 1.1.2

Author: Tommi Salonen, Satu Kuukankorpi

Package: Linssi core

Created: 8.11.2005

Updated: 2.1.2006 Updated to show additional weather data
Satu Kuukankorpi
27.1.2006 Changed linePlot to scatterPlot, fixed bugs concerning
handling of missing data. Weather stations are fetched from the database
station table. Only stations with stationType = weather are selected
Satu Kuukankorpi
5.7.2006 JAH : Documentation

Description: This script shows selected weather data from selected weather stations in
database in a chosen time period

Reads tables: stations, weathers

Modules: linssi version 1.1, JpGraph graph-library

4.4 deleteStation

Not implemented yet.

4.5 showCoordinates

Not implemented yet.

4.6 deleteTempCoordinates

Not implemented yet.

20

4.7 deleteCoordinates

Not implemented yet.

4.8 deleteWeather

Not implemented yet.

21

Chapter 5

Entry Point One

In Linssi manual Part I [1] entry point 1 is defined as the procedures that start from the
production or collection of activity to from the sample. In Linssi v.1.1 we have defined
three sample types that can apply entry point 1: air filter samples, calibration samples and
CTBT laboratory samples. The scripts, or their proposed names, in this chapter deal with
air samplers and filter samples, but similar scripts should also be developed for other sample
types.

5.1 recordSample.php, selectSampler.php, startSampler.php,

etc.

Not implemented yet.

5.2 showAirFilterSamples

Not implemented yet.

5.3 updateAirFilterSamples

Not implemented yet.

22

Chapter 6

Entry Point Two

In Linssi manual Part I [1] entry point 2 is defined as the procedures that start from receiving
a sample to be measured. The scripts presented in this chapter deal with displaying and
modifying sample data.

Some of these scripts refer to AKu input file format that is documented in Ch. 14. Some
scripts refer to ODBC that is clarified in Ref. [5].

6.1 sampletodb

Purpose: Script for reading sample data into Linssi database

Version: 1.1.3

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 19.12.2005

Updated: 17.1.2006
Version 1.1.2: Changed the type of sampleSplitsCombines block to type 2.
5.7.2006 JAH : Documentation

Description: Script for importing sample table data into Linssi database. Data is read from
stdin unless -f -option is used. The AKu input format (see Linssi manual Part
II) is either of type 1 or type 2 depending on the table.
Type 1:
#table_name

firstValue

secondValue

<blobName>

BLOB

BLOB

</blobName>

thirdValue

#another_table_name

...

Type 2:
#table_name

firstValue1 secondValue1 "BLOB BLOB" thirdValue1

23

firstValue2 secondValue2 "BLOB BLOB" thirdValue2

...

Empty line alone (except inside a blob) is assumed to end the current table.
Each table name should exist only once in the file. Following tables use the type
2 format: sampleSplitsCombines, mobileCoordinates and airFilterSOH.
Lines containing only ”&”are treated as NULL value when entering it into table.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: sampletodb [-f reportfile] [-d database_name/DSN] [-u username]

[-p password] [-g configFile] [-i] [-c|-o|-s] [-odbc|-noodbc]

Options:

-f Data is read from a given file. If this option is not given, the

report is read from stdin.

-i Script reports assigned idSample after processing.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

inter MySQL drivers are used.

-c If database contains data with the same sampleId, data in

samples, is compared with the data in file.

Fields that have NULL in file or database are ignored. If some of

the compared fields does not match, the script is aborted with

error message. Useful for checking consistency of data when it is

inputted piecemeal.

-o If database contains data with the same sampleId, data in

samples with the same sampleId/measurementId is overwritten.

24

Useful when file contains newer or more accurate information

than in database.

NOTE: Requires MySQL v.4.1.0 or newer.

-s If database contains data with the same sampleId

the input is aborted. Useful when combining data from two

different sources that may have assigned same

sampleId/measurementId for different samples/measurements.

Writes tables: mobileCoordinates, airFilterSOH, airFilterSamples, calibrationSamples, cali-
brationNuclides, samples, sampleSplitsCombines, sources, ctbtLabSamples

Modules: linssiConfig.pm v.1.1.1 or newer

6.2 meastodb

Purpose: Script for reading measurement data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 19.12.2005

Updated: 5.7.2006 JAH : Documentation

Description: Script for importing measurement table data into Linssi database. Data is read
from stdin unless -f -option is used. The AKu input format (see Linssi manual
Part II) is of type 1:
#table_name

firstValue

secondValue

<blobName>

BLOB

BLOB

</blobName>

thirdValue

#another_table_name

...

Empty line alone (except inside a blob) is assumed to end the current table. Each
table name should exist only once in the file. Sample-block is a special case in
the script. The sample-block can be either of normal form or it can contain only
the the two first values of normal form. In either case only sampleId-field is used
from the block. That field is used to correlate rest of the data in the file to the
correct sample already in database.
Lines containing only ”&”are treated as NULL value when entering it into table.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc-parameter are not given the val-
ues in the configuration file are used instead (username and password are those
of write-user). See below for more details. Note that you need to have the

25

linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.
Following tables are currently supported by meastodb: measurements, measure-
mentSetups. In addition samples block is needed in normal or shortened format
for sampleId.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: meastodb [-f reportfile] [-d database_name/DSN] [-u username]

[-p password] [-g configFile] [-i] [-c|-o|-s] [-odbc|-noodbc]

Options:

-f Data is read from a given file. If this option is not given, the

report is read from stdin.

-i Script reports assigned idMeas after processing.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

inter MySQL drivers are used.

-c If database contains data with the same measId, data in

measurements and samplingData with the same

measurementId is compared with the data in file.

Fields that have NULL in file or database are ignored. If some of

the compared fields does not match, the script is aborted with

error message. Useful for checking consistency of data when it is

inputted piecemeal.

-o If database contains data with the same measurementId, data in

measurements with the same

measId is overwritten. Useful when file contains

newer or more accurate information than in datbase.

NOTE: Requires MySQL v.4.1.0 or newer.

- s If database contains data with the same measId

the input is aborted. Useful when combining data from two

different sources that may have assigned same

measurementId for different measurements.

26

Writes tables: measurements, measurementSetups

Modules: linssiConfig.pm v.1.1.1 or newer

6.3 showSamples.php

Purpose: Fetches sample data from chosen stations in a time interval

Version: 1.1.6

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

Updated: Status backgroundcolor now changes if anomalous nuclides were
detected in the final analysis. - tos
Added status explanations - tos
Added ”samples without status” count - tos
Changed the order of the software in the list - tos
Added ”include background measurements”-option - tos
5.7.2006 JAH : Documentation

Description: This script fetches samples / measurements from the chosen stations in the
given time interval. Information about found samples / measurements is printed
in a table, and in the end of each row a form is printed with all the software that
has produced an analysis from the corresponding sample / measurement. Form is
used as a link to the analysis results (analysisReport.php). Analysis status field
indicates if anomalies have been found in the final analysis of the corresponding
sample / measurement. Nuclides that are not considered as anomalies (and that
are defined in the array in anomalousNuclides.php) are defined in the beginning
of the script.

Reads tables: airFilterSamples, ctbtLabSamples, finalResults, measurements, analyses, sam-
ples, activities

Modules: linssiConfig.php, htmlTags.php, linssiFormTools.php, linssiPHPLib.php, anoma-
lousNuclides.php

6.4 sampleReport.php

Purpose: Creates sampling reports in html and excel format

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

Updated: Added acqStart, acqEnd, completionTime and dbEntryTime to the
report - tos
5.7.2006 JAH : Documentation

27

Description: This script creates sampling reports in html and excel format (PEAR::OLE
and PEAR::SpreadsheetExcelWriter packages must be installed on the server to
get the reports in excel format).

Reads tables: stations, airFilterSamples, finalResults, samples, activities, activityLimits

Modules: PEAR::OLE, PEAR::SpreadsheetExcelWriter, linssiConfig.php, htmlTags.php,
linssiPHPLib.php, linssiFormTools.php

6.5 deleteSample

Purpose: Deletes a sample and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

Updated: 18.1.2004
5.5.2005
Updated for v.1.1 table specification.
16.11.2005
Version 1.1.1: Uses linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password. Added –noodbc - option.
Syntax slightly modified.
5.7.2006 JAH : Documentation

Description: Script for deleting a sample and all associated data from Linssi database v.1.1.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give an empty string as password (-p
’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -s sampleId [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: samples, airFilterSamples, airFilterSOH, sources, measurements, analyses,
calPreferences, peaks, lineAssociations, activities, activityLimits, nuclideRatios,
finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

28

6.6 deleteMeas

Purpose: Deletes a measurement and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

Updated: 18.1.2004
5.5.2005
Updated for v.1.1 table specification.
16.11.2005
Version 1.1.1: Uses linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password. Added –noodbc - option.
Syntax slightly modified.
5.7.2006 JAH : Documentation

Description: Script for deleting a measurement and all associated data from Linssi database
v.1.1.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give an empty string as password (-p
’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -m measId [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: measurements, analyses, calPreferences, peaks, lineAssociations, activities,
activityLimits, nuclideRatios, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

29

Chapter 7

Calibration Management

Calibration management typically belongs to the basic tasks under LinssiWorld. The scripts
presented in this chapter are linked to it.

7.1 calibrations.php

Purpose: Tool for viewing calibrations

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

Updated: 20.6.2006 : calPoints are converted to double values before
creating the graph (this created problems in some installations of
PHP/JpGraph) - tos
5.7.2006 JAH : Documentation

Description: Tool for viewing calibrations. Shows general information (comments, creation
time etc.), calDataPairs and line graph images of calibrations. This script can
also be used to edit/add comments in calibrations and to set calibration as a
default in the measurementSetup.

Reads tables: calPreferences, measurementSetups, calibrations, analyses, calPoints

Writes tables: measurementSetups, calibrations

Modules: JpGraph, linssiConfig.php, htmlTags.php, linssiPHPLib.php, linssiFormTools.php

7.2 addCalibration.php

Purpose: Adds a new calibration set to Linssi database

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

30

Updated: 12.5.2006 : Removed the requirement that x values must be
higher than y values -tos
5.7.2006 JAH : Documentation

Description: Adds a new calibration set to Linssi database.

Reads tables: calibrations, measurementSetups

Writes tables: calibrations, calPoints

Modules: linssiConfig.php, htmlTags.php, linssiPHPLib.php, linssiFormTools.php

7.3 deleteCalibration

Not implemented yet.

31

Chapter 8

Entry Point Three

In Linssi manual Part I [1] entry point 3 is defined as procedures related with analysing a
gamma-ray spectrum. The spectrum may come from earlier entry points, from outside, or
from a Linssi database.

Some of these scripts refer to AKu input file format that is documented in Ch. 14. Some
scripts refer to ODBC that is clarified in Ref. [5].

8.1 analysistodb

Purpose: Script for reading analysis data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.12.2005

Updated: 23.2.2006
Version 1.1.1a: Fixed comments field in analysis-tables.
5.7.2006 JAH : Documentation

Description: Script for importing data into analysis tables of Linssi database. Data is read
from stdin unless -f -option is used. The AKu input format (see Linssi manual
Part II) is either type 1 or type 2 depending on the table:
Type 1:
#table_name

firstValue

secondValue

<blobName>

BLOB

BLOB

</blobName>

thirdValue

#another_table_name

...

Type 2:
#table_name

firstValue1 secondValue1 "BLOB BLOB" thirdValue1

32

firstValue2 secondValue2 "BLOB BLOB" thirdValue2

...

Empty line alone (except inside a blob) is assumed to end the listing of fields for
the current table. Most table names should exist only once in the file. Exception
to this are the calibrations, calPreferences and calPoints tables. In these blocks
idCal field for the same calibration appearing in different blocks should be the
same. Preferably it should start from one, so first calibration in the file will have
idCal 1, next idCal 2 and so on. Note however that this script assigns different
idCals to calibrations during input process to prevent multiple calibrations in
database from having the same idCal.
Following tables use the type 2 format: peaks, lineAssociations, activities, nu-
clideRatios, activityLimits and calPoints. Sample and measurements-tables are
a special case in the script. These blocks can either follow the normal form of the
table or alternatively they can contain only the first two (samples) or seven (mea-
surements) values of normal block. In either case only the sampleId/measId-field
is used from these blocks. That field is used to correlate the rest of the data in
file to the correct sample already in database.
Lines containing only ”&”are treated as NULL value when entering it into table.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc-parameter are not given, the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have the
linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script, or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: analysistodb [-f reportfile] [-d database_name/DSN] [-u username]

[-p password] [-g configFile] [-i] [-odbc|-noodbc]

Options:

-f Data is read from a given file. If this option is not given, the

report is read from stdin.

-i Script reports assigned idAnalysis and idCal after processing.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

33

inter MySQL drivers are used.

Writes tables: calibrations, analyses, calPreferences, calPoints, peaks, lineAssociations, ac-
tivities, nuclideRatios, activityLimits, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

8.2 deleteAnalysis

Purpose: Deletes an analysis and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

Updated: 18.1.2004
5.5.2005
Updated for v.1.1 table specification.
16.11.2005
Version 1.1.1: Uses linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password. Added –noodbc - option.
Syntax slightly modified.
5.7.2006 JAH : Documentation

Description: Script for deleting an analysis and all associated data from Linssi database
v.1.1.
The database name, username and password can be given as arguments for the
script. If you wish to use no password give empty string for password (-p ’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -a idAnalysis [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: analyses, calPreferences, peaks, lineAssociations, activities, activityLimits,
nuclideRatios, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

8.3 analysisReport.php

Purpose: Prints different kinds of analysis reports

34

Version: 1.1.6

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

Updated: Added link to showCorrFactors.php - tos
4.5.2006 : If sampleProductionTable is ctbtLabSamples and
stationSplitAirVolume is set, use that instead of airVolumeTotal - tos
8.5.2006 : list of other measurements from the same sample can
be set off from linssiconfig.php - tos
12.5.2006 : fixed a bug related to activities and ctbtLab
samples - tos
20.6.2006 - changed the hard coded port 80 to
$ SERVER[’SERVER PORT’] in sendToHost function -tos
5.7.2006 JAH : Documentation

Description: Prints different kinds of analysis reports (short, long, peaks, associations). It’s
also possible to get analysis reports in PDF format (modified HTML2FPDF li-
brary must be installed on the server). Parameters can be idAnalysis OR idMeas
and software OR idSample and software OR idMeas OR idSample. In cases when
there is more than one analysis matching the parameters, the one with final sta-
tus (or with highest idAnalysis) is printed. Links in the report toolbar can be
removed by changing the settings in the linssiConfig.php configuration file.

Reads tables: analyses, finalResults, activities, peaks, lineAssociations, measurements, sam-
ples, airfilterSamples, ctbtLabSamples, stations, measurementSetups, sources,
calPreferences, calibrations, activityLimits

Modules: linssiConfig.php, linssiPHPLib.php, htmlTags.php, HTML2FPDF, showSpec-
trum.php, spectrumPart.php, peakGraph.php, editAnalysis.php, eurdep.php,
showCorrFactors.php

8.4 dbtophd

Purpose: Creates PHD file of given measurement from Linssi database

Version: 1.1.4

Author: Antero Kuusi

Package: Linssi core

Created: 3.6.2004

Updated: 30.8. 2004
Added -c -option.
31.8.2004
Added -e -option
30.11.2004
Linssi v.1.01 to v.1.1 upgrade
Dropped -e option (always used)
14.03.2005 AP
Reading defaults from config file (˜/.linssirc)
23.11.2005 AP

35

Version 1.1.3b
DataType and SystemType decided by samples.sampleType
Option -i idCal added
21.02.2006 AP
Version 1.1.3b2
Bug Fixes: airVolume for split samples, background MID, spacing
23.02.2006 AP
Version 1.1.3b4
g TotalEfficiency to TotalEff, Linssi:sourceId from measurements.sourceId,
GasBackgroundMID (0) added. -f option bug solved.
5.7.2006 JAH : Documentation

Description: This script creates PHD file from information in Linssi database. The table
specifications are according to the database definition 1.1.
The script uses database name, username and password given as arguments. If
database name or username are not given, they are read from configuration file
(˜/.linssirc)
The PHD file is not probably exactly as the one used to create the data in
database. This depends completely on the input system used.

Syntax: dbtophd [-d databaseName] [-u username] [-p password] -f outfile

-m measId|-h phdMeasName [-i idCal] [-C configFile] [-c]

Options: -d databaseName Name of the database that contains the information.

If not given the name in the beginning of the script is used.

-u username Username to be used. User need to have select rights to

the database. If not given the name in the beginning of the

script is used.

-p password Password for the user. If not given the one in user’s

.linssirc will be used.

-f outfile Filename for the output file.

-m measId MeasId of the measurement.

-h phdMeasName PhdMeasName of the measurement.

-i idCal idCal of the calibration set to be reported, default is

idCal in measurementSetups table.

-C configFile Read configuration from configFile instead of default

config file ~/.linssirc.

-c Add sampleId, measId, stationId, measSetupId, idMeas,

idCal and sampleType to #Comments block.

36

Chapter 9

Reporting and Displaying Scripts

The basic reporting and graphical display scripts linked to LinssiWorld are presented in
this chapter.

9.1 showSpectrum.php

Purpose: Prints a line graph image of a spectrum with identifications

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

Updated: Don’t fetch nuclides if their energy is null - tos
8.6.2006 : two for loops optimized - tos
5.7.2006 JAH : Documentation

Description: This script prints a line graph image of a spectrum with nuclide identifica-
tions given the idAnalysis number. HTML-page also includes a javaScript func-
tion which is used to zoom into the certain part of the spectrum (zoomSpec-
trum.php required). Script also fetches the strippedSpectrum and baseline from
the database and inserts them into PHP session variables, which are later used
by the zoomSpectrum.php.

Reads tables: samples, airFilterSamples, measurements, analyses, calPreferences, calibra-
tions, peaks, lineAssociations

Modules: JpGraph, linssiConfig.php, linssiPHPLib.php

9.2 zoomSpectrum.php

Purpose: Zoom feature for showSpectum.php

Version: 1.1.4

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

37

Updated: modified energy shifts functionality - tos
To improve speed, script modified to handle only those channels
which are inside the zoomed area - Sakari Ihantola
Fixed a bug which occurred if register globals setting in PHP was
on - Tommi Salonen & Sakari Ihantola
5.7.2006 JAH : Documentation

Description: A zoom feature for showSpectum.php. A 100 keV wide portion of the spec-
trum is shown in a separate browser window, together with strippedSpectrum,
baseline, fitted peak and nuclide identifications (if available). User can select
either linear or logarithmic vertical scale. Further zooming in/out and scrolling
are also implemented.

Modules: JpGraph, linssiConfig.php

9.3 editAnalysis.php

Purpose: Script for manual editing of analysis results

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

Updated: 4.5.2006 - If sampleProductionTable is ctbtLabSamples and
stationSplitAirVolume is set, use that instead of airVolumeTotal - tos
5.7.2006 JAH : Documentation

Description: Script for manual editing of analysis results. This script can be used to change
the calculation method for activity concentrations, change analysis status or to
create a new manual analysis from existing one by deleting some nuclides.

Reads tables: analyses, peaks, lineAssociations, activities, activityLimits, nuclideRatios, fi-
nalResults, calPreferences, samples, airFilterSamples, ctbtLabSamples

Writes tables: analyses, peaks, lineAssociations, activities, activityLimits, nuclideRatios, fi-
nalResults, calPreferences

Modules: linssiConfig.php, linssiPHPLib.php, htmlTags.php

38

Chapter 10

Linssi Script Reference List

This chapter presents the list of Linssi scripts in the distribution package as of July 2006. A
majority of these scripts were presented in more detail in the previous chapters, but there
are a number of scripts that are listed only here. The categorization of scripts differs slightly
from the previous chapters.

New scripts are probably added to the distribution more frequently than this document
is updated. An up-to-date list of the scripts will be maintained on the Linssi home page
http://linssi.hut.fi/radphys/linssi/.

10.1 Configuration Scripts and Libraries

linssirc-template

Purpose: Template for the configuration file .linssirc

Version: 1.1.3

Author: Andreas Pelikan

Package: Linssi core (v.1.1)

Created: 7.3.2005

linssiConfig.pm

Purpose: Package for handling Linssi configuration files

Version: 1.1.3

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 10.10.2005

linssiGetoptStd.pm

Purpose: Package for parsing command line options from Linssi config file

Version: 1.1.2

Author: Andreas Pelikan

Package: Linssi core

Created: 18.11.2005

39

http://linssi.hut.fi/radphys/linssi/

linssiConfig.php

Purpose: Linssi PHP scripts configuration file

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

linssiFormTools.php

Purpose: Functions for printing of forms and checking parameters

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

linssiPHPLib.php

Purpose: PHP functions

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

htmlTags.php

Purpose: Perl CGI-like library, with functions that generate html tags

Version: 1.1.1

Author: Andreas Pelikan

Package: Linssi core

Created: 27.1.2006

collectInfo

Purpose: Collects tagged comments from code and exports them to LATEX

Version: 1.1.2

Author: Sakari Ihantola

Package: Linssi core

Created: 13.6.2006

40

10.2 Database Creation Scripts

preparedb

Purpose: Create database and user accounts

Version: 1.1.1

Author: Andreas Pelikan

Package: Linssi core

Created: 18.11.2005

maketables

Purpose: Creates tables in Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 15.7.2003

desctables

Purpose: Shows descriptions of all tables in a Linssi database

Version: 1.1.6

Author: Jarmo Ala-Heikkila

Package: Linssi core

Created: 11.2.2004

10.3 Basic Housekeeping Scripts

checkdb

Purpose: Checks Linssi database for errors and inconsistencies in data

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 4.6.2004

fixdb

Purpose: Fixes errors and inconsistencies in Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 9.10.2005

41

deleteSample

Purpose: Deletes a sample and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

deleteMeas

Purpose: Deletes a measurement and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

deleteAnalysis

Purpose: Deletes an analysis and all associated data from Linssi

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.7.2003

10.4 Basic Database Input Scripts

filetodb

Purpose: Imports sample, measurement and analysis data into Linssi database

Version: 1.1.1

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.12.2005

analysistodb

Purpose: Script for reading analysis data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 23.12.2005

42

meastodb

Purpose: Script for reading measurement data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 19.12.2005

sampletodb

Purpose: Script for reading sample data into Linssi database

Version: 1.1.3

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 19.12.2005

stufftodb

Purpose: Script for reading miscellaneous data into Linssi database

Version: 1.1.2

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 30.11.2005

10.5 Data Extraction Scripts

dbtofile

Purpose: Generates database reports from Linssi database

Version: 1.1.4

Author: Antero Kuusi

Package: Linssi core (v.1.1)

Created: 20.3.2005

dbtophd

Purpose: Creates PHD file of given measurement from Linssi database

Version: 1.1.4

Author: Antero Kuusi

Package: Linssi core

Created: 3.6.2004

43

dbtorlr

Purpose: Creates an rlr report in IMS2.0 IDCR6 format

Version: 1.1.1

Author: Andreas Pelikan

Package: Linssi core

Created: 03/23/05

createPhd.php

Purpose: Creates a PHD file from the chosen analysis

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.3.2006

eurdep.php

Purpose: Creates an analysis report in Eurdep 2.0 format

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi core

Created: 1.12.2005

10.6 Scripts for Handling Calibrations

calibrations.php

Purpose: Tool for viewing calibrations

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

addCalibration.php

Purpose: Adds a new calibration set to Linssi database

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

44

10.7 Scripts for Interactive Data Browsing and Anal-

ysis

changeDb.php

Purpose: Prints a database selection form

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

showSamples.php

Purpose: Fetches sample data from chosen stations in a time interval

Version: 1.1.6

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

analysisReport.php

Purpose: Prints different kinds of analysis reports

Version: 1.1.6

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

showSpectrum.php

Purpose: Prints a line graph image of a spectrum with identifications

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

showCorrFactors.php

Purpose: Shows correction factors and raw activities for nuclides

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi core

Created: 2.3.2006

45

zoomSpectrum.php

Purpose: Zoom feature for showSpectum.php

Version: 1.1.4

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

editAnalysis.php

Purpose: Script for manual editing of analysis results

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

peakGraph.php

Purpose: Shows the chosen peak as a line graph image

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

spectrumPart.php

Purpose: Creates a linegraph image of certain part of a spectrum

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

anomalousNuclides.php

Purpose: Defines an array that contains all anomalous nuclides

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

showWeather.php

Purpose: Shows selected weather data from selected weather stations

Version: 1.1.2

Author: Tommi Salonen, Satu Kuukankorpi

Package: Linssi core

Created: 8.11.2005

46

10.8 Report Generating Scripts

sampleReport.php

Purpose: Creates sampling reports in html and excel format

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.10.2005

showDetectors.php

Purpose: Shows the detectors from the database

Version: 1.1.1

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

showMeasurementSetups.php

Purpose: Shows the measurementSetups from the database

Version: 1.1.1

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

showSources.php

Purpose: Shows the sources from the database

Version: 1.1.1

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

showStations.php

Purpose: Shows the stations from the database

Version: 1.1.1

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

47

showSamplers.php

Purpose: Shows the samplers from the database

Version: 1.1.1

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core

Created: 1.5.2006

trends.php

Purpose: Creates a line graph image showing activity concentrations

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

anomalies.php

Purpose: Prints a report that shows all detected anomalous nuclides

Version: 1.1.4

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

qc.php

Purpose: Shows the resolution for certain nuclides for QC purposes

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi core

Created: 1.6.2005

10.9 CTBT Laboratory Scripts

ctbtConfig.php

Purpose: CTBT script configuration file

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

48

ctbtWebConfig.php

Purpose: CTBT webscript configuration file

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtCheckMail.php

Purpose: Checks new mail and inserts the messages to database

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtLabSamples.php

Purpose: User interface to the CTBT scripts

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtMsgLib.php

Purpose: Functions for CTBT scripts

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

labDataMsg.php

Purpose: Class representing a LabDataMsg

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtMessage.php

Purpose: Functions to handle LabData messages

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

49

ctbtPHD.php

Purpose: Functions to handle PHD messages

Version: 1.1.2

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtRecipient.php

Purpose: Functions to handle recipients

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtRLR.php

Purpose: Functions to handle RLR messages

Version: 1.1.0

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtSampleTrackings.php

Purpose: Functions to handle sample tracking

Version: 1.1.3

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtSource.php

Purpose: Functions to handle sources

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

ctbtChangeDb.php

Purpose: Prints a database selection form

Version: 1.1.1

Author: Tommi Salonen

Package: Linssi CTBT scripts

Created: 1.4.2006

50

Chapter 11

Interface between Linssi and Analysis

Software

This chapter starts the second topic of this manual, i.e., interfacing Linssi with analysis
software. The UniSampo–Shaman software package can be understood as an illustrating
example, but this chapter also serves as a documentation of the functional UniSampo-Sha-

man-Linssi-system at STUK.

11.1 Linssi with UniSampo–Shaman

The connection between UniSampo–Shaman (USS) and the Linssi database is based on
temporary result files and scripts that import the file contents to database. The database
support has been built on the file-based USS-system, so everything else in the analysis
package works as without Linssi [3].

The operation of the UniSampo–Shaman system is mainly handled by a basic analysis
script called shaman_run. It takes care of the settings required by the analysis software
packages UniSampo and Shaman prior to calling them. The management of database
insertion is also controlled by shaman_run.a

The shaman_run script supports three basic operational modes: a pipeline mode, a non-
pipeline batch mode and an interactive mode. The support for storing data to Linssi is
available in all three modes. In each operational mode, shaman_run calls the binaries Uni-

Sampo and Shaman in due order and thus generates the temporary database reports .uda
and .udb from UniSampo and .sdb from Shaman. Whether or not these files are processed
to the database depends on the configuration (pipeline mode) or user actions (batch and
interactive mode).

It should be noted that even though the shaman_run script supports analysis of several
file formats (phd, asc, ids, mac, xml), database insertion is currently possible only for
phd-files.b This is because the other formats do not support the essential keys required by
Linssi (Ch. 12). Generating unique and compatible database keys is the key issue when

aThis means that if UniSampo or Shaman is invoked any other way than by shaman_run, their results

cannot be stored to Linssi. There may also be problems with the database connection if the spectrum is

acquired using UniSampo’s MCA connection, i.e., not given to it as input.
bIf shaman_run is invoked with an asc, ids or mac-file that was previously created during phd-file

analysis, the results can be stored in database. However, this is not possible for asc, ids or mac-files created

any other way.

51

@
@
�

�

?

?

-

-

-

-

-

-

-

-

-

-

-

-

�������

�

��������

�

MAILBOX mailchk

aanalyze

shaman_run

UniSampo

ustodb

Shaman

shtodb

categor

.msg

.phd

.phd .run .end

.uda .udb

.asc .ids .mac

.sdb

.cir

.arr

.rrr

.reb

.met

.alr

.fvm

.sam

.lru

.ptf

.ual

.uil

.usl

Linssi

.fir

.iir

.sar

.shl

.lr[0-5]

Linssi

.cat

Figure 11.1: Flow chart of the UniSampo–Shaman pipeline with Linssi.

interfacing analysis software with Linssi.

If the database insertion scripts are invoked in any operational mode of shaman_run, this
is done in the foreground. If the database is blocked, this will also interrupt the analysis
progress. Database insertion in the background would solve this problem and it was exper-
imented with earlier versions of Linssi. However, it is impossible to make correct database
links between UniSampo and Shaman results in that operational mode, so it had to be
abandoned. This means that any database jams need to be resolved promptly, making usage
of alarming scripts necessary.

52

11.1.1 Database Insertion in the Pipeline Mode

The UniSampo–Shaman analysis pipeline is illustrated in Fig. 11.1. It is operated by the
mailchk script that polls a dedicated mailbox at constant intervals. All mail messages are
given to the script aanalyze script that investigates their contents. If an incoming mail
message contains a spectrum, aanalyze calls the shaman_run script that makes the initial
settings and then calls UniSampo and Shaman in due order.

The USS-pipeline saves analysis results under the directory /home/shaman/dbroot (or sim-
ilar) in the reporting formats produced by UniSampo and Shaman. The different reports
can be distinguished by their filename extensions that are presented in Fig. 11.1. The reports
include temporary database reports with extensions .uda, .udb and .sdb that are inserted to
the database with the scripts ustodb and shtodb. Their functionality is explained on p. 57.

Storing of analysis results to a Linssi database can be turned on by setting the variable
linssidb=y in Shaman’s configuration file shaman.config. Additionally, the pipeline script
checks that the scripts for database insertion ustodb and shtodb are available.

Indirectly, a successful database connection also requires the file ~/.linssirc, since it is
consulted by the *todb scripts in the Linssi package that are used by ustodb and shtodb.
The usernames and passwords in ~/.linssirc must naturally be valid. If there are several
databases available, there should be a separate ~/.linssirc* file for each of them. The USS
system utilizes environmental variables LINSSIRC_READ and LINSSIRC_WRITE for selecting
the configuration file for the input and output database, respectively.

Data for all spectra processed by the pipeline are stored in the database by

default if database name and username have been defined. However, spectra can
be excluded from the database on the basis of spectrum type (FULL, PREL, BLNK, BACK,

CALI, QCSP, XXXX), sampling station (e.g., XXX00) and detector (e.g., XXX00-001). The
exclusion rules are configured in the shaman.config file.

Note that these exclusion rules are only applied in pipeline operation. In other
operational modes full control is given to the user, provided that he/she has permissions for
database updating.

11.1.2 Database Insertion in the Batch Mode

Non-pipeline batch mode means that shaman_run is invoked from the Unix prompt with the
-b option. The graphical user interfaces of UniSampo and Shaman are not displayed in
this mode. The mode is very similar to the pipeline mode, but there are some differences.
The difference in storing of analysis results in the database is that in the batch

mode, this is done only when the command line option -l is used, whereas in

the pipeline mode all results are stored in the database by default. Furthermore,
the exclusion rules that are applied in the pipeline mode are not applied in the batch mode.

Note that the database username and password need to be defined in the configuration
file ~/.linssirc of the user running the shaman_run script. The environment variables
LINSSIRC_READ and LINSSIRC_WRITE can be used to select the input and output database
configuration file, respectively.

11.1.3 Database Insertion in the Interactive Mode

In the full interactive mode with graphical user interfaces, analysis results from

53

UniSampo and Shaman are not stored in the database by default, but only on

user’s request.

In UniSampo’s case, the user is prompted for storing its final results in database upon
exiting. The default reply to the prompt, given by pressing the Enter key or anything else
but y and Enter, is not to save the results.

UniSampo’s intermediate analysis results can be stored to database upon selecting the
command “Store Analysis Results to Linssi” available in the Macro-menu. Please note that it
is the user’s responsibilty to ensure that the calibrations and analysis results are consistent
upon storing.

In Shaman’s case, there are no intermediate results, only final results. They are stored to
database upon pressing the “Store to Database”-button that is available in the standard but-
ton window of Shaman if a database has been configured. The button opens a confirmation
dialogue prior to invoking the database storing script.

Note that the database username and password need to be defined in the configuration
file ~/.linssirc of the user running the shaman_run script. The environment variables
LINSSIRC_READ and LINSSIRC_WRITE can be used to select the input and output database
configuration file, respectively.

11.2 Generation of Database Keys and Identifiers

Since analysis software packages run on entry point 3 of Linssi, they require knowledge of
some essential database keys as an input in order to provide consistent output to Linssi. The
adopted method to define these essential database keys, listed in Ch. 12, and some additional
string identifiers of Linssi is to utilize the #Comment block of the PHD-spectrum as explained
in Ch. 13.

The keys and identifiers that are not input using this method are generated by the shaman_run
script during runtime. The script extracts them from the other blocks of the PHD-spectrum
as described below. In this process, it is essential that the spectrum conforms to the PHD-
format definition by the CTBTO [4]. The blocks that are utilized are #Header, #Collection
and #Acquisition.

a. sampleId c

– sampling station (site), samsta, from the second line of #Header block

– sampling start date, samstartdate, and time, samstarttime, from the second line
of #Collection block

– if the source is not sampled, take acquisition start date and time from the
second line of #Acquisition block

– split symbol is the last two characters of the phdSampleName (SRID) in #Header

block

– if the source is not sampled, splitsymbol=00

– sequential integer, seqint, is generated from sampling start date: it is the 3-digit
day of year 001 . . . 366

cPlease note that the sampleId generated from standard PHD fields, like presented here, does not conform

to the definition of Ch. 12. This is because the components sampler code and filter type are not defined in

the PHD format.

54

– if the source is not sampled, seqint=000

sampleid=${samsta}_${samstartdate}_${samstarttime}_${splitsymbol}_${seqint}

b. measId

– MID, phdmid, from the fourth line of #Header block

– live aqcuisition time, livetime, from the second line of #Acquisition block

measid=${phdmid}_${livetime}

c. extSampleName

– if this key is not given in #Comment block, its value is null.

d. extMeasName

– if this key is not given in #Comment block, its value is null.

e. stationId

– sampling station (site), samsta, from the second line of #Header block

stationid=${samsta}

f. samplerId

– sampling station (site), samsta, from the second line of #Header block

samplerid=${samsta}

g. sourceId

– if this key is not given in #Comment block, its value is null.

h. detectorId

– detector code consisting of measuring station and detector, measta and meadet,
from the second line of #Header block

detectorid = ${measta}${meadet}

i. measSetupId

– detector code consisting of measuring station and detector, measta and meadet,
from the second line of #Header block

– measuring geometry, measgeom, from the second line of #Header block

55

meassetupid = ${detectorid}_${measgeom}

j. blankIdMeas

– if this key is not given in #Comment block, its value is null.

k. backgroundIdMeas

– if this key is not given in #Comment block, its value is null.

l. blankIdAnalysis

– if this key is not given in #Comment block, its value is null.

m. backgroundIdAnalysis

– if this key is not given in #Comment block, its value is null.

n. inputIdAnalysis

– if this key is not given in #Comment block, its value is null.

o. inputIdCal

– if this key is not given in #Comment block, its value is null.

p. calibrations.class

– if this key is not given in #Comment block, its value is null.

q. measurementSetups.idCal

– if this key is not given in #Comment block, its value is null.

r. combined

– if this key is not given in #Comment block, its value is 0.

s. sampleType

The line DATA_TYPE specifying the PHD-spectrum type and the system type (P/B/G)
on the second line of the #Header block are mapped to the following sampleType’s:

– spectrum type SAMPLEPHD and system type B or G ⇒ gassample

– spectrum type GASBKPHD and system type B or G ⇒ gasbackground

– spectrum type DETBKPHD and system type P ⇒ background

– spectrum type BLANKPHD and system type P ⇒ blank

– spectrum type CALIBPHD and system type P ⇒ calibration

– spectrum type QCPHD and system type P ⇒ qcspectrum

56

– spectrum type SAMPLEPHD and system type P ⇒ airfilter or environmental

depending on the command line option given to shaman_run (-a or -e correspond-
ingly)

This list needs to be updated when support for new sample types is added to Linssi

and the analysis software.

t. sourceDensity d

– if this parameter is not given in #Comment block, its value is null.

u. sourceThickness d

– if this parameter is not given in #Comment block, its value is null.

11.2.1 Technical Implementation

shaman_run is a Bourne shell script where the different keys are defined as variables. These
variables are input to UniSampo’s and Shaman’s database reports similarly in principle,
but the technical implementation differs slightly:

1. UniSampo generates preliminary database reports (.uda, .udb) where database fields
containing strings irrelevant for the analysis are presented as placeholders separated
by two at-characters, e.g., @sampleId@. These placeholders are replaced afterwards by
the ustodb script using the Unix sed-command and the shell script variables. This
is because the RGL report generator of UniSampo does not support command line
arguments.

2. Shaman generates directly the final database report (.sdb), i.e., including correct
values also for the database fields irrelevant for the analysis. This is because the
RGL report generator of Shaman supports command line arguments that are written
verbatim to the correct places in the database report. The shtodb script is therefore
only a symbolic link to the generic filetodb script.

An additional complication arises from the need to output the calibration data pairs input to
UniSampo, in addition to those that were possibly updated by it during processing. This is
implemented so that the same RGL report is produced by UniSampo with original calibra-
tions (.uda) and with updated calibrations (.udb). The tables calibrations, calPoints
and calPreferences are extracted from the .uda file, their idCal and usedInAnalysis

fields are modified and finally appended to the .udb file. Then the placeholder replacement
described above takes place.

The ustodb script also extracts the #Certificate-block from the PHD-file, if available,
and inserts it into its proper place in the calibrations tables of the .uda report. In
calibrations tables of the .udb report, on the other hand, no certificate information is
available, since they are usually internal calibrations.

dThe source parameters are included on the list, because they may be used by Shaman for self-absorption

correction. For this purpose, they must be accompanied by a setting of calibrations.class to SOURCE.

57

11.3 Tables Updated by UniSampo and Shaman

The following tables are updated by UniSampo (U) and Shaman (S):

3 airFilterSamples U S

3 calibrationSamples U S

7 samples U S

12 measurementSetups U S

13 measurements U S

14 calibrations U

14.1 calPreferences U S

15 calPoints U

16 analyses U S

17 peaks U S

18 lineAssociations S

19 activities U S

20 activityLimits U S

21 nuclideRatios S

The numbering refers to that used in Fig. 1.3 of the Linssi manual Part I [1].

The last 9 tables are clearly analysis results from USS. Every new analysis is given a unique
analysisId and saved in the database as such. The possibilities for manual modification of
USS-results in the database should be kept at minimum for traceability reasons. Of course,
the results may be later removed from the database if they are grossly erroneous and if this
is the practice of the organization. Some organizations may keep all analysis results in the
database for the record and only flag the grossly erroneous results in the comments field of
each table, for example. The practice should be decided by the organization itself and an
administration script should be written for removing or flagging analysis result with a given
analysisId when found necessary.

The first 5 tables on the list mainly contain input for USS or fields that are not needed
by them. They are always output by USS, but they should be ignored in cases when the
sample has been collected or at least measured by the organization itself (entry points 0,

1 and 2 in Fig. 1.2 of the Linssi manual Part I [1]). In this case, the tables should contain
the correct information already prior to running UniSampo and Shaman, i.e., the software
packages cannot add any relevant information to these tables.

The first 5 tables are needed in cases when the organization receives a measured spectrum
from outside, e.g., a spectrum measured by the IMS network of the CTBTO (entry point

3 in Fig. 1.2 of the Linssi manual Part I [1]). In this case the sample and measurement
data are missing from the database prior to running UniSampo and Shaman. By using
the first 5 tables output by the USS, the essential information can be retrieved from the
PHD-spectrum to the database, possibly for manual completion later.

58

Chapter 12

Adopted Syntax for Unique Keys

The database includes a number of unique keys. Some of these keys are auto-increment
integers that are maintained by the database itself. However, there are also some string
keys (type varchar) whose uniqueness must be assured by the user. This means that naming
practices need to be defined for these keys by the organization using Linssi.

The most essential keys in Linssi, and in gamma spectrometry in general, are the sample
and measurement identifiers, for which character strings are used in Linssi. The spectrum
file format that is understood by the UniSampo–Shaman package is the PHD-format de-
fined by the CTBTO. In connection with the definition of the PHD-format, the formats
for the sample and measurement identifiers (Sample Reference Identification, SRID, and
Measurement Identification, MID, in the CTBTO jargon) as well as their positions in the
PHD-file are defined in the document ”Formats and Protocols for Messages – Revision 6”
(IDC-3.4.1Rev6) [4].

However, the definitions in IDC-3.4.1Rev6 are quite limited and actually, the definition of
the MID fails to be unique: it only includes the acquisition start time that is identical if
spectra are measured in slices (N×PREL-measurements and a FULL-measurement without
acquisition restart in between). Another complication arises in the situation where a spec-
trum or a sample is given to analysis from an outside customer that has a different naming
practice than the analyzing organization.

In order to have degrees of freedom, there are four different fields for both the sample and
measurement identifier in Linssi:

sample: idSample (int), sampleId (varchar), phdSampleName (varchar), i.e., SRID, and
extSampleName (varchar) in table samples

measurement: idMeas (int), measId (varchar), phdMeasName (varchar), i.e., MID, and
extMeasName (varchar) in table measurements

In both cases, the integer key is made unique by the database itself and the uniqueness of
sampleId and measId must be secured by the user. The fields with prefix phd and ext are
not required but only recommended to be unique by the database specifications.

The current USS-implementation defines phdSampleName and phdMeasName to obey the
naming practices of IDC-3.4.1Rev6. The sampleId and measId fields use another definition
by the Finnish Radiation and Nuclear Safety Authority (STUK). These format definitions
are presented below.

59

12.1 idSample

An auto-increment integer key managed by the database.

12.2 sampleId

The key sampleId is defined by STUK/ASL for a sampled source (with a collection start
time) as:

cccccccccc_yyyy/mm/dd_hh:mm:ss_Pp_xxx

cccccccccc station code + sampler code + filter type

yyyy/mm/dd collection start date

hh:mm:ss collection start time

Pp split identifier: P = split number, p = total nr of splits

xxx sequential integer

Example: HEP02CI01F_2004/02/17_08:04:00_11_18

For a source that is not sampled (blank, background, QC, calibration etc.), sampleId has
the same format but with the following field contents:

cccccccccc station code / detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

Pp split identifier, always "00"

xxx sequential integer, always "000"

Example: FI001-D01_2004/02/05_10:05:03_00_000

Please note that a sampleId generated from standard PHD spectrum fields cannot conform
to this definition. This is because the components sampler code and filter type are not
defined in the PHD format. This definition can be applied only when specifying the keys in
the #Comment block like documented in Ch. 13.

12.3 phdSampleName

The key phdSampleName obeys the definition of SRID of the CTBTO:

1. In the case of air filters with pre-printed barcodes where the SRID format below is
impossible to follow, any unique SRID for every air filter will be considered valid.

2. The format of the SRID for filter samples is a 14 or 15-character code:

ccyyyymmddhhPpT

cc CTBT station number (e.g., CKP23 -> 23)

yyyymmddhh collection start

60

Pp split identifier: P = split number, p = total nr of splits

T station type: G for noble gas, blank for particulate

Example: 23200305230711

3. The format of the SRID for other than filter samples is a 14 or 15-character code:

ccttttttttxxxxT

cc CTBT station or laboratory number

tttttttt sample type identifier:

00000000 blank filter identifier

11111111 detector background measurement identifier

77777777 special IMS sample identifier

88888888 check source identifier

99999999 calibration source identifier

xxxx a sequential number

T station type: G for noble gas, blank for particulate

Example: 35111111110006G

12.4 extSampleName

A freely settable character string, preferably unique.

12.5 idMeas

An auto-increment integer key managed by the database.

12.6 measId

The key measId is defined by STUK/ASL to be identical to phdMeasName, but the acquisition
live time is appended to make the key unique:

ccccc_ddd-yyyy/mm/dd-hh:mm:ss_aaaaaa

ccccc station code

ddd detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

aaaaaa acquisition live time

Example: HEP02_D01_2004/02/19_08:25:00.0_81871.5

61

12.7 phdMeasName

The key phdMeasName obeys the definition of MID by the CTBTO: the first nine characters
are the station+detector code, the tenth character is a dash, and the remaining characters
are the date and time of the acquisition start.

ccccc_ddd-yyyy/mm/dd-hh:mm:ss

ccccc station code

ddd detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

Example: BRG11_001-2000/02/06-20:00:00

12.8 extMeasName

A freely settable character string, preferably unique.

62

Chapter 13

PHD-File Format Extension

There are two ways to construct keys and identifiers for Linssi in entry point 3 — spectrum
analysis:

1. Write the keys to the #Comment block of a PHD-spectrum (see the Linssi core script
dbtophd). A PHD-spectrum modified in this way conforms to the PHD-spectrum
definition of the CTBTO [4]. The extensions are documented below.

2. Let the spectrum analysis script define the keys on the basis of the data in the PHD-
spectrum blocks #Header, #Collection, and #Acquisition (see Sec. 11.2).

The first alternative is recommended and it shall be given priority by the analysis system,
i.e., a key or identifier given in a #Comment block must not be changed by the analysis script.

The following keys and identifiers in the #Comment block are currently supported:

a. sampleId

b. measId

c. extSampleName

d. extMeasName

e. stationId

f. samplerId

g. sourceId

h. detectorId

i. measSetupId

j. blankIdMeas

k. backgroundIdMeas

l. blankIdAnalysis

m. backgroundIdAnalysis

n. inputIdAnalysis

o. inputIdCal

p. calibrations.class

63

q. measurementSetups.idCal

r. combined

s. sampleType

t. sourceDensity a

u. sourceThickness a

For the definitions of the keys see the Linssi manual Part I [1]. It is important to note that
a PHD-spectrum that contains any of the integer database keys j.–o. is tied to one Linssi

implementation, i.e., the integer keys cannot be exported to another Linssi implementation.

The syntax for defining each of these keys/identifiers in the #Comment block is:

1. one key/identifier per line

2. the key/identifier name prefixed by “Linssi:” and no space

3. the key/identifier name followed by a space

4. the value for the key/identifier

Example: Linssi:calibrations.class SETUP

13.1 Example of an Extended PHD-File

Below we give an example of a PHD-file that contains Linssi extensions in the #Comment

block. The extensions are framed for clarity.

BEGIN RMS2.0

MSG_TYPE DATA

MSG_ID 00003662

DATA_TYPE SAMPLEPHD

#Header

HEP02 FI001-D01 P A9 FULL

HEP02CI01P_2004/12/30_08:02:00_11

HEP02_FI001-D01_2005/01/01_08:12:00.0 -FI001-D01-1999/07/02-08:24:00.0

2005/01/02 08:01:52.0

#Comment

Other comments

Linssi:sampleId HEP02CI01P_2004/12/30_08:02:00_11_203

Linssi:samplerId CI01

Linssi:stationId HEP02

Linssi:measId HEP02_FI001-D01_2005/01/01_08:12:00.0_79777

Still more comments

#Collection

2004/12/30 08:02:00.0 2004/12/31 08:01:00.0 13471

#Sample

9.80 0.15 9.00

#Acquisition

2005/01/01 08:12:00.0 85777 79777

#Energy

46.539001 137.893585 0.100000

77.108002 230.136398 0.100000

87.180000 260.206879 0.100000

238.632004 714.635803 0.100000

aThe source parameters are included on the list, because they may be used by Shaman for self-absorption

correction. For this purpose, they must be accompanied by a setting of calibrations.class to SOURCE.

64

477.612000 1431.399048 0.100000

583.190979 1748.041992 0.100000

727.330017 2180.433105 0.100000

860.564026 2580.149902 0.100000

1093.900024 3280.095215 0.100000

1460.800049 4380.392578 0.100000

1764.494019 5291.525391 0.100000

2103.532959 6308.622070 0.100000

2614.532959 7841.349121 0.100000

#Resolution

185.873032 1.687073 0.162545

238.677277 1.599915 0.019327

277.402283 1.207947 0.196168

351.989990 2.054047 0.317100

477.615326 1.797760 0.026302

583.177673 1.962036 0.021768

609.345398 1.498779 0.159257

661.534546 1.668091 0.179939

727.351318 2.055054 0.054498

785.438232 1.761597 0.095406

860.608032 2.005737 0.091816

911.139832 2.023499 0.092679

968.791321 2.143982 0.184401

1093.880127 1.696411 0.274368

1120.146240 2.477661 0.159326

1460.686768 2.610596 0.389208

1620.982910 1.852783 0.491402

1764.506104 2.545166 0.358929

2103.510010 3.485352 0.099305

2614.471924 3.136230 0.063993

#Efficiency

5.000E+01 2.450E-02 1.225E-03

8.000E+01 9.350E-02 4.667E-03

9.000E+01 1.152E-01 5.833E-03

1.000E+02 1.325E-01 6.667E-03

1.100E+02 1.455E-01 7.333E-03

1.350E+02 1.645E-01 8.167E-03

1.500E+02 1.673E-01 8.333E-03

2.000E+02 1.597E-01 8.000E-03

3.000E+02 1.272E-01 6.333E-03

5.000E+02 8.833E-02 4.500E-03

7.000E+02 6.983E-02 3.500E-03

1.200E+03 4.783E-02 2.333E-03

2.000E+03 3.333E-02 1.667E-03

3.000E+03 2.517E-02 1.333E-03

3.600E+03 2.200E-02 1.167E-03

#Spectrum

8192 2700

0 0 0 0 0 0

5 0 0 0 0 0

10 0 0 0 0 0

15 0 0 0 0 0

20 0 0 0 0 0

25 0 0 0 0 0

30 0 0 0 0 0

35 0 0 0 0 0

40 0 0 0 0 0

45 0 0 0 0 2658

50 2298 1998 1758 1572 1467

...

8140 5 6 1 2 5

8145 4 1 2 3 1

8150 4 5 2 4 3

8155 2 4 3 4 1

8160 1 4 4 2 3

8165 5 5 3 1 4

8170 2 6 5 4 2

8175 4 8 3 2 3

8180 4 6 6 7 3

8185 1 2 3 2 3

8190 1 0 0 0 0

STOP

65

Chapter 14

AKu File Format for Database Import

Analysis results can be stored to a Linssi database with the script analysistodb that is a
basic building block for entry point three in the Linssi package. It understands text files in a
simple blocked format called AKu after its developer Antero Kuusi of FINDC. This format is
also used in other *todb scripts of the Linssi package as documented earlier in this manual.

The AKu-format is obeyed by the temporary database reports .uda, .udb and .sdb, gen-
erated by UniSampo and Shaman using their report generating language (RGL). Its use
is also recommended for other analysis software packages. The AKu file format has the
following principles:

1. Each block corresponds to a database table. A block starts with a line containing the
table name preceded by a hash sign, e.g., #samples. The block ends with an empty
line or a line including the next table name.

2. Blocks with names that do not correspond to Linssi table names are neglected, but
a warning is issued by the *todb scripts by default. This feature can be used for
commenting or for applying the analysis result files for other purposes.

3. The fields of the table are written in their correct order, separated either with a newline
or a space. The former separation method is used in tables with a single entry for each
field (e.g., analyses) and referred to as AKu format Type 1. The latter is used in
tables with several entries for each field (e.g., peaks) and referred to as AKu format

Type 2.

4. Fields containing simple data types (integer, double, char, etc.) are presented as such.
Floating point numbers are output with the format %-22.17g that guarantees a suffi-
cient number of significant digits for double precision numbers.

5. String fields (varchar, text) are within double quotes if they contain space, otherwise
without quotes.

6. The fields of type text are mostly within XML-type separators (e.g., <inputParam>...
</inputParam>).

7. The (long)blob fields are also within XML-type separators, using the most generic
ASCII text format for the data in the block. Usually this means one number per row,
e.g., the longblob field spectrum in table measurements.

66

8. The sign for a missing field is an ampersand &. These fields are given the value null

in the database insertion phase.

This blocked format is understood by the analysistodb script that takes the database
reports from an analysis software package as input and feeds their contents to the database
after checking that database interrelations work correctly, e.g., database keys are unique. In
the USS-package, the analysistodb script is used through filetodb script in the Linssi

package. The script filetodb, in turn, is used by the ustodb and shtodb scripts that
are delivered with the USS-package. The shtodb script is actually a symbolic link to the
filetodb script, whereas ustodb performs some string manipulation tasks before calling the
filetodb script (see p. 57). Basically, data from UniSampo and Shaman are fed to the
database identically.

Any other analysis software package can utilize the database insertion scripts analysistodb
in a similar manner, provided that it supports tailorable reports and the essential database
keys like the USS-package does.

14.1 Example Report in AKu Format

An example of a database report produced by UniSampo and processed by the ustodb

script is presented below. Some repetitive parts have been deleted and replaced with “...”
and long lines have been split to fit to the page. A split line is indicated with backslash.

#airFilterSamples

&

CI01

HEP02

20041230080200

20041231080100

86340

86340

13471

13471

&

&

&

&

&

20041231080100

&

<comments>

</comments>

#samples

&

HEP02CI01P_2004/12/30_08:02:00_11_203

HEP02CI01P_2004/12/30_08:02:00_11

&

11

&

0

airfilter

airFilterSamples

&

<barcode>

HEP02CI01P_2004/12/30_08:02:00_11

</barcode>

&

<sampleConditionArrival>

</sampleConditionArrival>

<packConditionArrival>

</packConditionArrival>

<sealConditionArrival>

67

</sealConditionArrival>

&

&

&

&

<comments>

</comments>

#measurementSetups

HEP02FI001-D01

FI001-D01

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

<comments>

</comments>

#measurements

&

&

&

HEP02FI001-D01

&

&

HEP02_FI001-D01_2005/01/01_08:12:00.0_79777

HEP02_FI001-D01_2005/01/01_08:12:00.0

&

&

&

&

&

&

&

87060

20050101081200

20050102080137

85777

79777

FULL

1

1

8192

8192

<spectrum>

0

0

0

0

0

...

3

2

3

1

0

</spectrum>

20050102080152

<comments>

</comments>

#calibrations

2

68

energy

HEP02FI001-D01

&

1

SOH

&

20050101081200

<calInfo>

</calInfo>

<calCertificate>

</calCertificate>

2

<functionDef>

</functionDef>

0

8192

1.5689100325108E-01

3.3334475755692E-01

&

&

&

&

&

&

&

&

4.0824156254530E-02

1.1395708497730E-05

&

&

&

&

&

&

&

&

<comments>

</comments>

#calPoints

1 2 energy & & 138.52696228027344 46.53900146484375 0.10000000149011612 &

2 2 energy & & 231.19894409179688 77.107002258300781 0.10000000149011612 &

3 2 energy & & 261.09396362304688 87.3489990234375 0.10000000149011612 &

4 2 energy & & 715.6475830078125 238.63200378417969 0.10000000149011612 &

5 2 energy & & 1055.520263671875 351.9320068359375 0.10000000149011612 &

6 2 energy & & 1432.475830078125 477.59500122070312 0.10000000149011612 &

7 2 energy & & 1749.1329345703125 583.19097900390625 0.10000000149011612 &

8 2 energy & & 2181.37255859375 727.33001708984375 0.10000000149011612 &

9 2 energy & & 2581.535888671875 860.56402587890625 0.10000000149011612 &

10 2 energy & & 4381.84814453125 1460.822021484375 0.10000000149011612 &

11 2 energy & & 5292.2724609375 1764.4940185546875 0.10000000149011612 &

12 2 energy & & 6309.96533203125 2103.532958984375 0.10000000149011612 &

13 2 energy & & 7842.982421875 2614.532958984375 0.10000000149011612 &

...

#calPreferences

2

&

1

#analyses

&

&

&

&

&

&

&

&

&

<inputParam>

Library lookup tolerance: 0.60 keV.

</inputParam>

69

<interactiveLog>

</interactiveLog>

shaman_run/b

UniSampo

"UniSAMPO 2.24 (22 December 2004) "

jarmo

<baseline>

0

0

0

0

0

...

3

2

3

1

0

</baseline>

<strippedSpectrum>

0

0

0

0

0

...

3

2

3

1

0

</strippedSpectrum>

<peakSearchSignificance>

0

0

0

0

0

...

0

0

0

0

0

</peakSearchSignificance>

&

&

&

&

<refConstants>

</refConstants>

<baselineMethod>

</baselineMethod>

<peaksMethod>

The peak analysis software uses Mariscotti’s generalized second differences

method for peak search. After initial search, peak candidates are fitted and

tested for their significance against Currie’s decision limit and candidates

below the limit are discarded from the peak list.

Peak areas are determined by fitting a Gaussian function with exponential

lower and upper tails to spectrum data, with peak parameters obtained from

peak shape calibration (fixed-width fitting).

</peaksMethod>

<nuclideMethod>

Nuclide identification is based on LSQ solution on candidate matrix.

UniSampo used a library of 150 nuclides and 726 gamma-ray and X-ray lines.

Its methods and parameters are presented in a comprehensive manual.

</nuclideMethod>

<uncCalcMethod>

</uncCalcMethod>

<lcMethod>

</lcMethod>

0.050000011920928955

0.050000011920928955

98

70

8177

2.4000000953674316

41

417644

<comments>

</comments>

#peaks

1 & & & 138.27375793457031 0.26241952180862427 46.249721527099609 0.10376090556383133 \

242.77622985839844 40.667675018310547 55.600063323974609 1.7290549278259277 4.0716133117675781 \

22.485544204711914 3.5115795135498047 3.5115795135498047 & & \

0 0.0030431856866925955 0.00050976692000404 0.017300082370638847 0.0043250205926597118 \

3.3276784420013428 1.428852915763855 & 83.602760314941406 169.90988159179688 0 "M Q0Q1C0" \

117 160 & & 1310.4656982421875 188.42481994628906 13.726792335510254 \

117 160 189.4771728515625 -0.63915663957595825 0 & \

0.17590585350990295 0.030750799924135208 & & & & \

& & &

2 & & & 189.16575622558594 0.22575381398200989 63.214305877685547 0.09333985298871994 \

408.0308837890625 47.844329833984375 91.94451904296875 1.7565633058547974 4.136390209197998 \

4.2087516784667969 3.5393800735473633 3.5393800735473633 & & \

0 0.0051146429032087326 0.00059972587041556835 0.05511065199971199 0.013756892643868923 \

6.4090538024902344 2.322054386138916 & 86.507720947265625 175.71978759765625 0 "M Q0Q1C0" \

164 199 & & 1407.3572998046875 199.18736267089844 14.113375663757324 \

164 199 200.29981994628906 0.86513090133666992 0 & \

0.092806793749332428 0.011828898452222347 & & & & \

& & &

...

#activities

Be-7 & & & 0.99898308515548706 4604256 s & & 14.594400405883789 \

0.75564807653427124 1 & & & & & \

& & 1.0064705610275269 & & \

& 1.0131926536560059 & 77.43572998046875 & \

1.0065131187438965 & & & &

K-40 & & & 0.99999153614044189 39761724894609408 s & & 15.657556533813477 \

0.80023986101150513 1 & & & & & \

& & 1 & & \

& 1 & 664397086720 & \

1 & & & &

...

#activityLimits

Np-239 & & & 105.99699401855469 62.008010864257812 63.720748901367188 1366.6767578125 \

36.968589782714844 & & & & \

0.35588937997817993 0 &

Ce-144 & & & 133.43045043945312 73.3912353515625 56.363945007324219 1360.5181884765625 \

36.885204315185547 & & 0.13667310774326324 1.0183001904806588e-05\

0.42216187715530396 0 &

...

#calibrations

1

energy

HEP02FI001-D01

&

0

PHD

&

20050101081200

<calInfo>

</calInfo>

<calCertificate>

</calCertificate>

1

<functionDef>

</functionDef>

0

8192

0.0000000000000E+00

&

&

&

&

&

71

&

&

&

&

0.0000000000000E+00

&

&

&

&

&

&

&

&

&

<comments>

</comments>

#calPoints

1 1 energy & & 138.89358520507812 46.53900146484375 0.10000000149011612 &

2 1 energy & & 231.13639831542969 77.108001708984375 0.10000000149011612 &

3 1 energy & & 261.20687866210938 87.180000305175781 0.10000000149011612 &

4 1 energy & & 715.63580322265625 238.63200378417969 0.10000000149011612 &

5 1 energy & & 1432.3990478515625 477.61199951171875 0.10000000149011612 &

6 1 energy & & 1749.0419921875 583.19097900390625 0.10000000149011612 &

7 1 energy & & 2181.43310546875 727.33001708984375 0.10000000149011612 &

8 1 energy & & 2581.14990234375 860.56402587890625 0.10000000149011612 &

9 1 energy & & 3281.09521484375 1093.9000244140625 0.10000000149011612 &

10 1 energy & & 4381.392578125 1460.800048828125 0.10000000149011612 &

11 1 energy & & 5292.525390625 1764.4940185546875 0.10000000149011612 &

12 1 energy & & 6309.6220703125 2103.532958984375 0.10000000149011612 &

13 1 energy & & 7842.34912109375 2614.532958984375 0.10000000149011612 &

...

#calPreferences

1

&

0

72

Chapter 15

Administrative Issues

During the testing phase of Linssi, the following important lessons were learnt:

1. The organization utilizing Linssi shall define its procedures prior to introducing Linssi

as an operational database. The design goal of Linssi was to keep it sufficiently flexible
for different users, but it is likely that old procedures need to be adjusted for utilizing
Linssi in the most efficient way.

2. There should be at least two databases running at the same time: an operational
database for strict business and a test database for making all kinds of experiments,
testing new queries etc. This secures the integrity of the operational database and still
enables further development of the system.

3. Running a database requires an administrator. His/her major tasks are to constantly
monitor the functionality and integrity of the database and to maintain and develop
efficient database scripts for the basic users. An experienced administrator could write
scripts that alarm him/her automatically by e-mail or text message if anything out of
the ordinary is happening in the database.

4. Basic database users should not make any complicated SQL queries, since they can
mess up the database or at least block its usage. Model scripts and queries should
be made available by the administrator and collected to a place available to all users.
Database access through well-designed web forms would be preferable.

5. The ability of an SQL database for parallel processing is very limited. If you make a
large query, it is likely to block the database from all other queries, especially those
inserting new data to the database. Housekeeping of the database should be scheduled
to out-of-office hours.

6. If you run so large a query in MySQL that the results do not fit into memory, MySQL
will start writing them under its temporary data directory on the /var-disk. Therefore,
the hard disk of the database server should be partitioned cleverly. It is possible that
even making the /var-disk a separate partition is not sufficient, as it is also used by
many other processes than MySQL. If MySQL fills the disk, probably nothing will
work.

7. If the design of a query is not optimal, it may start stealing computing resources (see
point 6). In MySQL, a query can be exited by pressing Ctrl-C, but it will keep running
in the background until explicitly killed. The kill procedure is the following:

73

a. find out the process idNumber inside MySQL: show processlist;

b. kill the process: kill idNumber;

8. MySQL has a very informative operational manual available on the web. All database
users should at least have a glance at the manual prior to using the database. The
manual is likely to be needed in any troubleshooting situation. A printed version may
also be useful sometimes.

9. If there are 16k spectra to be analyzed, the default limits of MySQL are exceeded by
the database reports. To allow processing of these large reports, the MySQL daemon
shall be started with an option increasing the maximum packet size:

% mysqld --max_allowed_packet=10M

10. The analyses table is by far the largest one due to the three longblob’s (baseline,
strippedSpectrum, peakSearchSignificance) stored in the table. If large amounts
(tens of analyses per day) of data are stored to Linssi, the size may grow larger than
the maximum table size allowed by default by MySQL, more exactly its default table
format MyISAM. There are two alternative solutions:

a. Increase the maximum MyISAM table size by MySQL command line arguments.
One analysis takes an average of 400 kB of space in the analyses table, and by
default, the maximum size of a MyISAM table is 4 GB. Thus, the analyses table
in MyISAM format accepts about 10,000 analyses with default settings.

b. Convert the analyses table to InnoDB format that has no size limitations
(http://dev.mysql.com/doc/mysql/en/innodb.html). This can be done right
after creating the Linssi database or when the database has been operating any
period of time. Detailed instructions are available from the author upon request.

74

http://dev.mysql.com/doc/mysql/en/innodb.html

Bibliography

[1] P.A. Aarnio, Linssi— SQL Database for Gamma-Ray Spectrometry. Part I: Database,
Version 1.1. Helsinki University of Technology Publications in Engineering Physics. A,
TKK-F-A841, Espoo 2006.
http://linssi.hut.fi/radphys/linssi/linssi.pdf

[2] UniSampo — Advanced Gamma Spectrum Analysis Software. User’s Guide, Version
2.4. Doletum Oy, Ltd., Helsinki, August 2006.

[3] Shaman — Expert System for Radionuclide Identification, Version 1.13. User’s Guide
Version 1.8.1. Baryon Oy, Ltd., Espoo, June 2005.

[4] Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization,
IDC Documentation: Formats and Protocols for Messages. IDC-3.4.1Rev6, Vienna 2004.

[5] Open Database Connectivity (ODBC) Portal.
http://www.sqlsummit.com/ODBCPORT.HTM

75

http://linssi.hut.fi/radphys/linssi/linssi.pdf
http://www.sqlsummit.com/ODBCPORT.HTM

Appendix A

Installation Instructions for Linssi

A.1 Database

A Linssi database can be implemented with any SQL engine (MySQL, PostgreSQL, Oracle,
etc.). However, scripts written in Perl and PHP may be engine-dependent. We have chosen
MySQL as the database engine and present installation instructions for Linssi under MySQL.

MySQL database is a commercial package that is included in many Linux distributions,
including RedHat, SuSE and Mandrake. It is free for non-commercial use as can be seen
from the license on the MySQL web page http://www.mysql.com. The newest versions of
the database can be found on these pages, as well as a comprehensive online manual.

Linssi v.1.1 requires MySQL version 4.0 or newer. The scripts for Linssi take advantage of
Perl and PHP. For example, the following packages were installed under Mandrake 10.1 from
its distribution CD’s for Linssi testing purposes:

MySQL-common-4.0.20-3.1.101mdk

MySQL-4.0.20-3.1.101mdk

MySQL-client-4.0.20-3.1.101mdk

libmysql12-4.0.20-3.1.101mdk

perl-base-5.8.5-3.1.101mdk

perl-Mysql-1.22_19-9mdk

perl-CGI-3.05-1mdk

perl-DBI-1.43-2mdk

zlib1-1.2.1.1-3mdk

php-mysql-4.3.8-1mdk

php-ini-4.3.8-1mdk

php-gd-4.3.8-2mdk

php-cgi-4.3.8-3.2.101mdk

libphp_common432-4.3.8-3.2.101mdk

This list is only meant for illustration, not to recommend Mandrake 10.1 that is actually
an obsolete, unsupported version since March 2006. The Linssi v.1.1 scripts have been in
production use under CentOS4 and SuSE 9.3.

The package names vary across different Linux distributions and in some cases they may need
to be downloaded as compressed TAR-files. The compressed TAR-files shall be unpacked,

76

http://www.mysql.com

compiled and installed according to the instructions that follow in the package. The RPM-
files, on the other hand, can be installed in a simple manner as root:

% rpm -i name.rpm

Additionally, the system is to be set up using a suitable Linux system configuration tool to
start MySQL automatically at boot time.

When everything is installed, log in to the MySQL database to change the MySQL root
password (Note: different from the root password of the Linux system):

% mysql -u root

Change the password to new_password (or something else):

mysql> use mysql;

mysql> update user set password=password(’new_password’) where user=’root’;

mysql> flush privileges;

Now is time to generate the Linssi database and some users for the database. In the example
below, the user webbi may only view the results and the user xunil can do nearly anything
but delete the database. The former is to be used by database viewing scripts and the latter
by scripts that modify the contents of the database.

mysql> create database linssi;

mysql> grant select on linssi.* to webbi@localhost;

mysql> grant create,lock tables,insert,select,update on linssi.* to \

xunil@localhost identified by ’some_password’;

The Linssi database was created, but it does not contain any tables yet. A perl script called
maketables is provided in the Linssi package to install the basic tables for result storage. If
the Linssi tables related to CTBT-laboratory samples are to be created, maketables should
be invoked with option -c. Its success can be checked with the script desctables that also
belongs to the Linssi package.

% maketables -d linssi -u xunil [-c] -p some_password

% desctables -d linssi -u webbi | less

These and other database scripts should reside under directory /usr/local/gamma/linssi

or a similar directory defined in each user’s Linssi configuration file .linssirc (see Sec. 2.2).
The most important script is analysistodb that imports analysis results to Linssi. When
using UniSampo and Shaman with Linssi, there should be a symbolic link named shtodb

pointing to filetodb (that calls analysistodb) and another link called ustodb pointing to
../shaman/bin/ustodb that calls filetodb after making some manipulations in UniSam-

po’s result files.a

To log in the database as the user webbi, a password is not required:

% mysql linssi -u webbi

aOther necessary configuration for connecting UniSampo and Shaman with Linssi is documented in the

USS installation instructions.

77

User xunil needs password, so the system requires that the password is given either on the
command line (not recommended), at a separate prompt, or in the Linssi configuration file
.linssirc in the home directory (see Sec. 2.2). Assuming the second alternative:

% mysql linssi -u xunil -p

Only MySQL root user may delete the whole database. This is done with command drop

inside MySQL database. The following example deletes the whole database and its contents:

% mysql -u root -p

mysql> drop database linssi;

When some data has been imported to the database, its contents can be browsed on MySQL
command line using the select-command or using the database browsing scripts provided
in the Linssi package. These scripts are presented elsewhere in this document.

A.2 Installation of the Linssi PHP Scripts

In order to use PHP scripts and web features there should be a webserver, like Apache,
installed and running. These instructions are written for Apache, but any other webserver
can be used with only minor modifications.

Installation of the main Linssi PHP scripts is very simple. Extract the script package into
a directory within the webserver’s document root and edit linssiConfig.php configuration
file (see Sec. 2.2) to set available databases, paths to external libraries and other configuration
directives. Directory where files are extracted is here expected to be /var/www/html/, but
it may vary depending on the system used.

Instructions on setting the database access credentials and installing the required (and op-
tional) external packages are given in the following sections. Every command in this section
should be given as the Unix root user.

A.2.1 Database Access Credentials

A good method and the one recommended by the PHP security consortium
(http://phpsec.org/projects/guide/) to protect database access credentials is to store
them into Apache’s environment variables. Create a file that only root can read with the
following lines:

SetEnv read_username "webbi"

SetEnv read_password ""

SetEnv write_username "xunil"

SetEnv write_password "some_password"

Usernames and passwords should be equivalent to those used when creating the database.
Since there was no password for user webbi, the value of read_password is also left empty.
We have chosen to save this file as dbConfig into directory /var/includes/. Filename and
location can be chosen freely, but for security reasons, it should not be saved in webserver
document root among the PHP scripts.

Include this file within Apache’s configuration file httpd.conf by adding the line:

78

http://phpsec.org/projects/guide/

Include /var/includes/dbConfig

In some Linux distributions the httpd.conf file is located in directory /etc/httpd/conf.
The filename can also be something else, like httpd2.conf.

Restart Apache. Now the access credentials can be found from the superglobal $_SERVER[]
array. Just be careful not to expose these variables with something like phpinfo() or
print_r($_SERVER).

By default Linssi PHP scripts expect that the database access credentials are stored in
Apache’s environment variables as decribed above, but the credentials can also be set di-
rectly in linssiConfig.php (see Sec. 2.2) by replacing the $_SERVER["read_username"]

etc. variables with the actual usernames and passwords. This is not recommended on public
servers.

A.2.2 Installing JpGraph

The graphics in these scripts requires a PHP package named JpGraph that is available from
http://www.aditus.nu. Extract the JpGraph package into any directory readable by PHP.
By default, the path /var/www/html/php/jpgraph/src is defined in the linssiConfig.php
file. When using some other installation directory, edit linssiConfig.php configuration file
to set the JpGraph path variable pointing to the src-directory of your JpGraph installation.

A.2.3 Getting Analysis Reports in PDF Format

A modified version of the html2fpdf library is required to get the analysis reports in PDF
format. The original library is available from http://html2fpdf.sourceforge.net, but T.
Salonen has modified it in order to be able to use png-figures generated dynamically by PHP
in Linssi reports. The modified library is distributed with Linssi scripts and it should be
used in this context.

Installation of the html2fpdf is similar to the installation of JpGraph. Extract the package
into any directory readable by PHP and set the installation path in the linssiConfig.php

configuration file. By default, the directory /var/www/html/php/pdf is assumed.

A.2.4 Getting Sample Reports in XLS Format

The Pear::OLE and Pear::Spreadsheet_Excel_Writer packages are required to get sample
reports in XLS format (MS-Excel spreadsheet). Pear is a PHP extension and application
repository and it is usually installed by default with all recent PHP distributions.

Installation of the required Pear packages:

% pear install OLE

% pear install Spreadsheet_Excel_Writer

If there are only beta versions of these packages available, the installation has to be performed
with the -d option:

% pear -d preferred_state=’beta’ install OLE

% pear -d preferred_state=’beta’ install Spreadsheet_Excel_Writer

The Pear packages are usually installed in the directory /usr/share/pear, which is also the
default path in linssiConfig.php.

79

http://www.aditus.nu
http://html2fpdf.sourceforge.net

A.2.5 HTTP Authentication

Updates to the database are controlled with HTTP authentication when done through a
web interface. For this to work, a password file must be created with Apache’s htpasswd

program in the following way:

% htpasswd [-c] /var/includes/.htpasswd some_username

htpasswd will prompt you for the password. This creates a new password file and adds the
user some_username to the file. The -c flag is used only when you are creating a new file.
After the first time, you shall omit the -c flag. If using some other directory or filename,
edit linssiConfig.php to define the path to the created password file.

A.3 Installation of the CTBT Laboratory Scripts

The CTBT laboratory scripts are meant for CTBT laboratories. They handle the compli-
cated message traffic between the CTBTO and the laboratory in addition to basic sample,
measurement and analysis functions. They are most probably useful for CTBT laboratories
only.

The CTBT laboratory sample tables and CTBT scripts have been designed and implemented
at STUK that runs the CTBT laboratory FIL07. Please contact tommi.salonen@stuk.fi

or mikael.moring@stuk.fi for closer details.

A.3.1 Basic Installation and Configuration

CTBT laboratory scripts shall be copied to their own directory somewhere under the web-
server’s document root, typically /var/www/html/ctbt/. After this the address to the user
interface is http://SERVER/ctbt/index.html or just http://SERVER/ctbt/.

CTBT scripts read messages from and write messages and spectrum files to the directories
that are defined in ctbtConfig.php. This file contains also some other configurations. Some
of them affect the handling of mail (e.g., the directory where invalid mail is moved to), some
of them are site specific (e.g., site code). These definitions are commented in the file itself.

There is also another configuration file, ctbtWebConfig.php. In this file, the user can set
available databases etc. These definitions are similar to linssiConfig.php that is used for
configuring the basic Linssi PHP scripts.

A.3.2 Storing Mails to the Database

New mail is stored to a Linssi database with the script ctbtCheckMail.php. This script
is meant to be executed from the command line. In this way the directory from where the
new mail is checked can be set readable only by the user (not webserver or others). The
ctbtCheckMail.php script reads database access credentials and database name from the
user’s .linssirc file.

Sender of the mail is authenticated with openssl if the authentication directory defined in
ctbtConfig.php exists.

80

http://SERVER/ctbt/index.html
http://SERVER/ctbt/

A.3.3 Automated Mail Processing

At STUK the handling of mail is automated with the mail processing software procmail

and executing the ctbtCheckMail.php as a cronjob. Procmail is instructed to move all
mail messages from a certain sender to the directory defined in ctbtConfig.php. After this
ctbtCheckMail.php stores the mail message, if valid, automatically to a Linssi database.

Sending of mail created at the CTBT laboratory is also automated. Additionally, null
PHD-files are automatically copied with scp to a remote server where a new measurement
is started. The command that sends the mail is another cronjob. If these operations are
not automated, the created mail and null PHD-files are just saved in the corresponding
directories.

81

82

ISBN 951-22-8185-6

ISSN 1456-3320

	Introduction
	Linssi Interface, Configuration and Documentation
	Basic Linssi Interface: LinssiWorld
	Basic Linssi Configuration
	Documentation of Linssi Scripts

	Database Management Scripts
	 preparedb
	 maketables
	 desctables
	 checkdb
	 fixdb

	Entry Point Zero
	 stufftodb
	 showStations.php
	 showWeather.php
	deleteStation
	showCoordinates
	deleteTempCoordinates
	deleteCoordinates
	deleteWeather

	Entry Point One
	recordSample.php, selectSampler.php, startSampler.php, etc.
	showAirFilterSamples
	updateAirFilterSamples

	Entry Point Two
	 sampletodb
	 meastodb
	 showSamples.php
	 sampleReport.php
	 deleteSample
	 deleteMeas

	Calibration Management
	 calibrations.php
	 addCalibration.php
	deleteCalibration

	Entry Point Three
	 analysistodb
	 deleteAnalysis
	 analysisReport.php
	 dbtophd

	Reporting and Displaying Scripts
	 showSpectrum.php
	 zoomSpectrum.php
	 editAnalysis.php

	Linssi Script Reference List
	Configuration Scripts and Libraries
	Database Creation Scripts
	Basic Housekeeping Scripts
	Basic Database Input Scripts
	Data Extraction Scripts
	Scripts for Handling Calibrations
	Scripts for Interactive Data Browsing and Analysis
	Report Generating Scripts
	CTBT Laboratory Scripts

	Interface between Linssi and Analysis Software
	Linssi with UniSampo--Shaman
	Database Insertion in the Pipeline Mode
	Database Insertion in the Batch Mode
	Database Insertion in the Interactive Mode

	Generation of Database Keys and Identifiers
	Technical Implementation

	Tables Updated by UniSampo and Shaman

	Adopted Syntax for Unique Keys
	idSample
	sampleId
	phdSampleName
	extSampleName
	idMeas
	measId
	phdMeasName
	extMeasName

	PHD-File Format Extension
	Example of an Extended PHD-File

	AKu File Format for Database Import
	Example Report in AKu Format

	Administrative Issues
	Bibliography
	Installation Instructions for Linssi
	Database
	Installation of the Linssi PHP Scripts
	Database Access Credentials
	Installing JpGraph
	Getting Analysis Reports in PDF Format
	Getting Sample Reports in XLS Format
	HTTP Authentication

	Installation of the CTBT Laboratory Scripts
	Basic Installation and Configuration
	Storing Mails to the Database
	Automated Mail Processing

